Sustainability Science

, Volume 12, Issue 6, pp 875–879 | Cite as

Bridging divides in sustainability science

  • Daniel J. Lang
  • Arnim WiekEmail author
  • Henrik von Wehrden
Short Commentary


Transdisciplinary research between diverse academic and societal actors is a core practice in sustainability science. However, it often seems to fail in delivering new scientific insights while also significantly contributing to sustainability transformations. It is also often experienced as a burden instead of adding value, which leads to fatigue and disengagement. To address these challenges, we propose to bridge four divides: (i) positioning and linking disciplinary and transdisciplinary research; (ii) transferring and scaling insights from real-world experimentation; (iii) opening the “extended ivory towers” and reaching a majority of relevant societal actors; (iv) aligning research practice with broader sustainability values such as collaboration, mindfulness, and altruism.


Sustainability science theory Solutions Impact Stakeholders Engagement Transformations 


  1. Abson DJ, Fischer J, Leventon J, Newig J, Schomerus T et al (2017) Leverage points for sustainability transformation. Ambio 46(1):30–39CrossRefGoogle Scholar
  2. Bracken LJ, Bulkeley HA, Whitman G (2015) Transdisciplinary research: understanding the stakeholder perspective. J Environ Planning Manag 58(7):1291–1308CrossRefGoogle Scholar
  3. Brandt P, Ernst A, Gralla F, Luederitz C, Lang DJ et al (2013) A review of transdisciplinary research in sustainability science. Ecol Econ 92:1–15CrossRefGoogle Scholar
  4. Brent AC, Swilling M (2013) Transdisciplinary approaches to R&D: the importance of understanding values and culture. In: Minderman G, Raman AV, Cloete F, Woods G (eds) Good, bad and next in public governance: the Winelands Papers. Eleven International Publishing, The HagueGoogle Scholar
  5. Brundiers K, Wiek A (2017) Beyond interpersonal competence—teaching and learning professional skills in sustainability. Edu Sci 7(1):39CrossRefGoogle Scholar
  6. Callon M, Law J (1997) After the individual in society: lessons on collectivity from science, technology and society. Can J Sociol 22(2):165–182CrossRefGoogle Scholar
  7. Clark WC, van Kerkhoff L, Lebel L, Gallopin GC (2016) Crafting usable knowledge for sustainable development. Proc Natl Acad Sci USA 113(17):4570–4578CrossRefGoogle Scholar
  8. Foley RW, Wiek A, Kay B, Rushforth R (2017) Ideal and reality of multi-stakeholder collaboration on sustainability problems – A case study on a large-scale industrial contamination in Phoenix, Arizona. Sustain Sci 12(1):123–136CrossRefGoogle Scholar
  9. Gethmann CF, Carrier M, Hanekamp G, Kaiser M, Kamp G et al (2015) Interdisciplinary research and trans-disciplinary validity claims. Springer, BerlinCrossRefGoogle Scholar
  10. Haider LJ, Hentati-Sundberg J, Giusti M, Goodness J, Hamann M, et al (2017) The undisciplinary journey: early-career perspectives in sustainability science. Sustain Sci (in press) Google Scholar
  11. Hering JG (2016) Do we need “more research” or better implementation through knowledge brokering? Sustain Sci 11(2):363–369CrossRefGoogle Scholar
  12. Janssen M, Ostrom E (2006) Empirically based, agent-based models. Ecol Soci 11(2):37CrossRefGoogle Scholar
  13. Lang DJ, Wiek A, Bergmann M, Stauffacher M, Martens P et al (2012) Transdisciplinary research in sustainability science—practice, principles and challenges. Sustain Sci 7(Supplement 1):25–43CrossRefGoogle Scholar
  14. Lang DJ, Wiek A, Luederitz L, von Wehrden H, Laubichler M et al (2016) Bridging the great divide in sustainability science: linking high-performance modeling and transition experiments to foster transformational change towards sustainability. Working Paper. Center for Global Sustainability and Cultural Transformation, Leuphana University of Lüneburg, Lüneburg, Germany and Arizona State University, TempeGoogle Scholar
  15. Luederitz C, Schäpke N, Wiek A, Lang DJ, Bergmann M et al (2016) Joint learning through evaluation—a tentative evaluative scheme for sustainability transition experiments. J Clean Prod (in press) Google Scholar
  16. Miller TR, Wiek A, Sarewitz D, Robinson J, Olsson L, Kriebel D, Loorbach D (2014) The future of sustainability science: a solutions-oriented research agenda. Sustain Sci 9(2):239–246CrossRefGoogle Scholar
  17. Pohl C, Krütli P, Stauffacher M (2017) Ten reflective steps for rendering research societally relevant. GAIA Ecol Perspect Sci Soc 26(1):43–51Google Scholar
  18. Polk M (2014) Achieving the promise of transdisciplinarity: a critical exploration of the relationship between transdisciplinary research and societal problem solving. Sustain Sci 9:439–451CrossRefGoogle Scholar
  19. Ruppert-Winkel C, Arlinghaus R, Deppisch S, Eisenack K, Gottschlich D et al (2015) Characteristics, emerging needs, and challenges of transdisciplinary sustainability science: experiences from the German Social-Ecological Research Program. Ecol Soc 20(3):13CrossRefGoogle Scholar
  20. Sarewitz D, Clapp R, Crumbley C, Kriebel D, Tickner J (2012) The sustainability solutions Agenda. New Solut 22:139–151CrossRefGoogle Scholar
  21. Schneidewind U (2015) Transformative Wissenschaft—Motor für gute Wissenschaft und lebendige Demokratie. GAIA Ecol Perspect Sci Soc 24(2):88–91Google Scholar
  22. Shahadu H (2016) Towards an umbrella science of sustainability. Sustain Sci 11(5):777–788CrossRefGoogle Scholar
  23. Siew TF, Aenis T, Spangenberg JH, Nauditt A, Döll P et al (2016) Transdisciplinary research in support of land and water management in China and Southeast Asia: evaluation of four research projects. Sustain Sci 11(5):813–829CrossRefGoogle Scholar
  24. Van der Leeuw S, Wiek A, Harlow J, Buizer J (2012) How much time do we have? Urgency and rhetoric in sustainability science. Sustain Sci 7(Supplement 1):115–120CrossRefGoogle Scholar
  25. Van Kerkhoff L (2014) Developing integrative research for sustainability science through a complexity principles-based approach. Sustain Sci 9(2):143–155CrossRefGoogle Scholar
  26. Wamsler C, Brossmann J, Hendersson,H, Kristjansdottir R, McDonald C, et al (2017) Mindfulness in sustainability science, practice, and teaching. Sustain Sci (in press) Google Scholar
  27. Wiek A, Ness B, Brand FS, Schweizer-Ries P, Farioli F (2012) From complex systems analysis to transformational change: a comparative appraisal of sustainability science projects. Sustain Sci 7(Supplement 1):5–24CrossRefGoogle Scholar
  28. Wiek A, Harlow J, Melnick R, van der Leeuw S, Fukushi K et al (2015) Sustainability science in action—a review of the state of the field through case studies on disaster recovery, bioenergy, and precautionary purchasing. Sustain Sci 10(1):17–31CrossRefGoogle Scholar
  29. Withycombe Keeler L, Wiek A, Lang DJ, Yokohari M, van Breda J et al (2016) Utilizing international networks for accelerating research and learning in transformational sustainability science. Sustain Sci 11(5):749–762CrossRefGoogle Scholar
  30. Wuelser G, Pohl C, Hirsch Hadorn G (2012) Structuring complexity for tailoring research contributions to sustainable development: a framework. Sustain Sci 7(1):81–93CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Daniel J. Lang
    • 1
    • 2
    • 3
  • Arnim Wiek
    • 1
    • 2
    • 4
    Email author
  • Henrik von Wehrden
    • 1
    • 2
    • 5
  1. 1.Center for Global Sustainability and Cultural TransformationLeuphana University of LüneburgLüneburgGermany
  2. 2.Arizona State UniversityTempeUSA
  3. 3.Institute of Ethics and Transdisciplinary Sustainability Research, Faculty of SustainabilityLeuphana University of LüneburgLüneburgGermany
  4. 4.School of SustainabilityArizona State UniversityTempeUSA
  5. 5.Institute of Ecology, Faculty of SustainabilityLeuphana University of LüneburgLüneburgGermany

Personalised recommendations