Sustainability Science

, Volume 12, Issue 4, pp 597–610 | Cite as

Sustainability beyond city limits: can “greener” beef lighten a city’s Ecological Footprint?

  • Mollie ChapmanEmail author
  • Alicia LaValle
  • George Furey
  • Kai M. A. Chan
Case Report
Part of the following topical collections:
  1. Sustainability Transitions, Management, and Governance


For cities seeking sustainability, the Ecological Footprint seems to be an excellent metric, potentially catalyzing actions directed outwards, at environmental problems beyond city limits. But does this metric actually guide cities down sustainable pathways? Through a case study of the City of Vancouver’s Greenest City Action Plan, we ask what barriers and side effects accompany a city’s application of a specific metric to measure achievement towards sustainability goals. Our case study began by examining a particular approach to achieving EF reduction (proposed by the City: local beef). Through a triple-loop learning approach, we broadened our analysis to include additional policy options not originally on the table. For each of four policy options (1. local beef, 2. grass-fed beef, 3. payments for ecosystem services, and 4. using a proxy metric focused on individual and community leadership), we evaluate their ability to meet the Ecological Footprint metric, consider their potential to address the broader goal and discuss their feasibility as policy options for the city. Our analysis showed the ways the Ecological Footprint metric: (a) focused attention on non-actionable policy areas, (b) was non-responsive to promising policy options and (c) limited the types of policy options considered. In this case we demonstrate how the choice of the Ecological Footprint as a metric and goal had unintended consequences and instead shifted attention and policy inwards. By avoiding this ‘metric trap’, cities might contribute importantly to regional and global sustainability.


Ecological Footprint Ecosystem services City sustainability Sustainability indicators Beef consumption and production Environmental impact of agriculture 



British Columbia


Ecological Footprint


Ecological Footprint analysis


Ecosystem services


Greenest City Action Plan


Greenhouse gas(es)

‘the City’

The City of Vancouver


The City of Vancouver


Non-government organization


Payment for ecosystem services


University of British Columbia


The City of Vancouver



We would like to thank our research partners Amy Fournier at the City of Vancouver’s Sustainability Group and Dave Zehnder of the Ecological Services Initiative (now called Farmland Advantage). We also are grateful to Emily Anderson and Conor Reynolds for their productive and insightful feedback on earlier drafts of this manuscript. Jennie Moore was extremely helpful in our understanding of Ecological Footprint Analysis and in providing us with additional data from her analysis. Bill Harrower offered useful insight into beef production in BC and grassland conservation. Finally, anonymous reviewers provided thoughtful and generous comments which greatly improved our paper.


  1. Austin MA, Buffett DA, Nicolson DJ et al (2008) Taking nature’s pulse; the status of biodiversity in British Columbia. Biodiversity, BCGoogle Scholar
  2. Bailey AW, McCartney D, Schellenberg M (2010) Management of Canadian Prairie rangeland. Agriculture and Agri-foods CanadaGoogle Scholar
  3. Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. doi: 10.1111/j.1461-0248.2006.00963.x CrossRefGoogle Scholar
  4. Baumer K (2013) First government approved food label for 100% grass fed meat introduced in Canada. In: Accessed 30 Oct 2015
  5. Beauchemin KA, Janzen HH, Little SM et al (2010) Life cycle assessment of greenhouse gas emissions from beef production in western Canada: a case study. Agric Syst 103:371–379. doi: 10.1016/j.agsy.2010.03.008 CrossRefGoogle Scholar
  6. Berghöfer A, Mader A, Patrickson S, et al (2011) TEEB manual for Cities: ecosystem services in urban management. TEEB the economics of ecosystems and biodiversityGoogle Scholar
  7. Betsill MM (2001) Mitigating climate change in US Cities: opportunities and obstacles. Local Environment 6:393–406. doi: 10.1080/13549830120091699 CrossRefGoogle Scholar
  8. Blomqvist L, Brook BW, Ellis EC, Kareiva PM, Nordhaus T, Shellenberger M (2013a) Does the shoe fit? Real versus imagined ecological footprints. PLoS Biol 11:e1001700. doi: 10.1371/journal.pbio.1001700
  9. Blomqvist L, Brook BW, Ellis EC, Kareiva PM, Nordhaus T, Shellenberger M (2013b) The ecological footprint remains a misleading metric of global sustainability. PLoS Biol 11:e1001702. doi: ​10.1371/journal.pbio.1001702Google Scholar
  10. Bowles S (2008) Policies designed for self-interested citizens may undermine “the moral sentiments”: evidence from economic experiments. Science 320:1605–1609. doi: 10.1126/science.1152110 CrossRefGoogle Scholar
  11. Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The nature and value of ecosystem services: An overview highlighting hydrological services. Annu Rev Environ Resour. doi: 10.1146/ Google Scholar
  12. Brown RR, Farrelly MA, Loorbach DA (2013) Actors working the institutions in sustainability transitions: the case of Melbourne’s stormwater management. Global Environ Change 23:701–718. doi: 10.1016/j.gloenvcha.2013.02.013 CrossRefGoogle Scholar
  13. Buffler S, Johnson C, Nicholson J, Mesner N (2007) Riparian buffer design guidelines for water quality and wildlife habitat functions on agricultural landscapes in the Intermountain Wes. USDA Forest Service/UNL Faculty Publications, USAGoogle Scholar
  14. Carlisle L (2015) Audits and agrarianism: the moral economy of an alternative food network. Elem Sci Anth 3:000066. doi: 10.12952/journal.elementa.000066 CrossRefGoogle Scholar
  15. Chan KMA, Satterfield T, Goldstein J (2012) Rethinking ecosystem services to better address and navigate cultural values. Ecolog Econ 74:8–18. doi: 10.1016/j.ecolecon.2011.11.011 CrossRefGoogle Scholar
  16. Chicago Climate Exchange (2009) CCX offset project protocol for agricultural best management practices: sustainably managed rangeland soil carbon sequestration. In: Chicago Climate Exchange, Inc.
  17. Childers DL, Pickett STA, Grove JM et al (2014) Landscape and urban planning. Landsc Urban Plan 125:320–328. doi: 10.1016/j.landurbplan.2014.01.022 CrossRefGoogle Scholar
  18. City of Vancouver (2011) Greenest City 2020 Action Plan. City of VancouverGoogle Scholar
  19. City of Vancouver (2013) Greenest City Action Plan 2012–2013 Implementation Update. City of VancouverGoogle Scholar
  20. Committee on Riparian Zone Functioning and Strategies for Management, Water Science and Technology Board, Board on Environmental Studies and Toxicology et al (2002) Riparian Areas. National Academies Press, Washington, D.CGoogle Scholar
  21. DeLind LB (2011) Are local food and the local food movement taking us where we want to go? Or are we hitching our wagons to the wrong stars? Agric Hum Values 28:273–283CrossRefGoogle Scholar
  22. Díaz S, Demissew S, Carabias J et al (2015) The IPBES Conceptual Framework—connecting nature and people. Curr Opin Environ Sustain 14:1–16. doi: 10.1016/j.cosust.2014.11.002 CrossRefGoogle Scholar
  23. Edwards-Jones G, Milà i Canals L, Hounsome N et al (2008) Testing the assertion that “local food is best”: the challenges of an evidence-based approach. Trends Food Sci Technol 19:265–274. doi: 10.1016/j.tifs.2008.01.008 CrossRefGoogle Scholar
  24. Failing L, Gregory R (2003) Ten common mistakes in designing biodiversity indicators for forest policy. J Environ Manage 68:121–132CrossRefGoogle Scholar
  25. Fiala N (2008) Measuring sustainability: why the ecological footprint is bad economics and bad environmental science. Ecolog Econ 67:519–525CrossRefGoogle Scholar
  26. Fletcher R, Breitling J (2012) Market mechanism or subsidy in disguise? Governing payment for environmental services in Costa Rica. Geoforum 43:402–411. doi: 10.1016/j.geoforum.2011.11.008 CrossRefGoogle Scholar
  27. Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574. doi: 10.1126/science.1111772 CrossRefGoogle Scholar
  28. Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342. doi: 10.1038/nature10452 CrossRefGoogle Scholar
  29. Folke C, Jansson Å, Larsson J, Costanza R (1997) Ecosystem appropriation by cities. AMBIO 26:167–172Google Scholar
  30. Fuhlendorf SD, Engle DM (2001) Restoring heterogeneity on rangelands: ecosystem management based on evolutionary grazing patterns. Bioscience 51:625–632. doi: 10.1641/0006-3568(2001)051[0625:rhorem];2 CrossRefGoogle Scholar
  31. Galli A, Giampietro M, Goldfinger S et al (2016) Questioning the ecological footprint. Ecol Indic 69:224–232. doi: 10.1016/j.ecolind.2016.04.014 CrossRefGoogle Scholar
  32. Giampietro M, Saltelli A (2014) Footprints to nowhere. Ecol Indic 46:610–621. doi: 10.1016/j.ecolind.2014.01.030
  33. Global Footprint Network (2015) Case stories. In: Global Footprint Network. Accessed Dec 2015
  34. Grimm NB, Faeth SH, Golubiewski NE et al (2008) Global change and the ecology of cities. Science 319:756–760CrossRefGoogle Scholar
  35. Guerry AD, Polasky S, Lubchenco J et al (2015) Natural capital and ecosystem services informing decisions: from promise to practice. PNAS 112:7348–7355CrossRefGoogle Scholar
  36. Hamann R, April K (2013) On the role and capabilities of collaborative intermediary organisations in urban sustainability transitions. J Clean Prod 50:12–21. doi: 10.1016/j.jclepro.2012.11.017 CrossRefGoogle Scholar
  37. Hauser J, Katz G (1998) Metrics: you are what you measure! Eur Manage J 16:517–528CrossRefGoogle Scholar
  38. Havlik P, Valin H, Herrero M et al (2014) Climate change mitigation through livestock system transitions. PNAS 111:3709–3714. doi: 10.1073/pnas.1308044111 CrossRefGoogle Scholar
  39. Jansson à (2013) Reaching for a sustainable, resilient urban future using the lens of ecosystem services. Ecolog Econ 86:285–291. doi: 10.1016/j.ecolecon.2012.06.013 CrossRefGoogle Scholar
  40. Kates RW, Wilbanks TJ (2003) Making the global local responding to climate change concerns from the ground. Environ Sci Policy Sustain Dev 45:12–23. doi: 10.1080/00139150309604534 CrossRefGoogle Scholar
  41. Kennedy C, Cuddihy J, Engel-Yan J (2008) The changing metabolism of cities. J Ind Ecol 11:43–59. doi: 10.1162/jie.2007.1107 CrossRefGoogle Scholar
  42. Kitzes J, Moran D, Galli A et al (2009) Interpretation and application of the Ecological Footprint: a reply to Fiala (2008). Ecolog Econ 68:929–930. doi: 10.1016/j.ecolecon.2008.11.001 CrossRefGoogle Scholar
  43. Klassen SE (2016) Decreasing distance and re-valuing local: how place-based food systems can foster socio-ecological sustainability. Solutions 7:22–26.Google Scholar
  44. Kosoy N, Corbera E (2010) Payments for ecosystem services as commodity fetishism. Ecolog Econ 69:1228–1236. doi: 10.1016/j.ecolecon.2009.11.002 CrossRefGoogle Scholar
  45. Lal R, Bruce JP (1999) The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environ Sci Policy 2:177–185. doi: 10.1016/s1462-9011(99)00012-x CrossRefGoogle Scholar
  46. Lee T (2014) Global cities and climate change. Routledge, USAGoogle Scholar
  47. Lenzen M, Murray SA (2001) A modified ecological footprint method and its application to Australia. Ecolog Econ 37:229–255. doi: 10.1016/S0921-8009(00)00275-5 CrossRefGoogle Scholar
  48. Lo-Iacono-Ferreira VG, Torregrosa-López JI, Capuz-Rizo SF (2016) Use of life cycle assessment methodology in the analysis of ecological footprint assessment results to evaluate the environmental performance of universities. J Clean Prod 133:43–53. doi: 10.1016/j.jclepro.2016.05.046 CrossRefGoogle Scholar
  49. Lu Y, Chen B (2016) Urban ecological footprint prediction based on the Markov chain. J Clean Prod. doi: 10.1016/j.jclepro.2016.03.034 Google Scholar
  50. Luck GW, Chan KMA, Eser U et al (2012) Ethical considerations in on-ground applications of the ecosystem services concept. Bioscience 62:1020–1029. doi: 10.1525/bio.2012.62.12.4 CrossRefGoogle Scholar
  51. Mayer PM, Reynolds SK, McCutchen MD, Canfield TJ (2007) Meta-analysis of nitrogen removal in riparian buffers. J Environ Qual 36:1172–1180. doi: 10.2134/jeq2006.0462 CrossRefGoogle Scholar
  52. McLarty D, Davis N, Gellers J et al (2014) Sisters in sustainability: municipal partnerships for social, environmental, and economic growth. Sustain Sci 9:277–292. doi: 10.1007/s11625-014-0248-6 CrossRefGoogle Scholar
  53. Moore J, Kissinger M, Rees WE (2013) An urban metabolism and ecological footprint assessment of Metro Vancouver. J Environ Manage 124:51–61. doi: 10.1016/j.jenvman.2013.03.009 CrossRefGoogle Scholar
  54. Mori K, Christodoulou A (2012) Review of sustainability indices and indicators: towards a new City Sustainability Index (CSI). Environ Impact Assess Rev 32:94–106. doi: 10.1016/j.eiar.2011.06.001 CrossRefGoogle Scholar
  55. National Trust (2012) What’s your beef? SwindonGoogle Scholar
  56. Newton AC (2011) Implications of Goodhart’s Law for monitoring global biodiversity loss. Conserv Lett 4:264–268CrossRefGoogle Scholar
  57. Nijdam D, Rood T, Westhoek H (2012) The price of protein: review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Pol 37:760–770. doi: 10.1016/j.foodpol.2012.08.002 CrossRefGoogle Scholar
  58. Office of Parliamentary Counsel, Canberra (2016) Carbon Credits (Carbon Farming Initiative) Regulations 2011Google Scholar
  59. Pagiola S (2008) Payments for environmental services in Costa Rica. Ecolog Econ 65:712–724. doi: 10.1016/j.ecolecon.2007.07.033 CrossRefGoogle Scholar
  60. Pahl-Wostl C (2007) Transitions towards adaptive management of water facing climate and global change. Water Resour Manage 21:49–62. doi: 10.1007/s11269-006-9040-4 CrossRefGoogle Scholar
  61. Pahl-Wostl C (2009) A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Global Environ Change 19:354–365.CrossRefGoogle Scholar
  62. Pattanayak SK, Wunder S, Ferraro PJ (2010) Show me the money: do payments supply environmental services in developing countries? Rev Environ Econ Policy 4:req006-274. doi: 10.1093/reep/req006 CrossRefGoogle Scholar
  63. Paustian K, Antle JM, Sheehan J, Paul EA (2006) Agriculture’s role in greenhouse gas mitigation. Pew Center on Global Climate Change, ArlingtonGoogle Scholar
  64. Pearson M, Blair D (2013) Guidance for restoration activities in riparian areas. In: Stewardship Centre for British Columbia.
  65. Pelletier N, Pirog R, Rasmussen R (2010) Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agric Syst 103:380–389. doi: 10.1016/j.agsy.2010.03.009 CrossRefGoogle Scholar
  66. Petersen D (2015) 2014–2015 Annual Report. Kootenay Conservation ProgramGoogle Scholar
  67. Pitre-Hayes A (2011) Report—Greenest City 2020 Action Plan: 5 July 2011. City of VancouverGoogle Scholar
  68. Rees WE (1996) Revisiting carrying capacity: area-based indicators of sustainability. Popul Environ 17:195–215CrossRefGoogle Scholar
  69. Rees WE (2012) Cities as dissipative structures: global change and the vulnerability of urban civilization. In: Sustainability science. Springer, New York, pp 247–273CrossRefGoogle Scholar
  70. Rees W, Wackernagel M (1996) Our ecological footprint : reducing human impact on the earth. New Society Publishers, Gabriola IslandGoogle Scholar
  71. Rees WE, Wackernagel M (2013) The shoe fits, but the footprint is larger than earth. PLoS BiolGoogle Scholar
  72. Rode J, Gómez-Baggethun E, Krause T (2015) Motivation crowding by economic incentives in conservation policy: a review of the empirical evidence. Ecolog Econ 117:270–282. doi: 10.1016/j.ecolecon.2014.11.019 CrossRefGoogle Scholar
  73. Rover O (2011) Agroecologia, mercado e inovação social: o caso da Rede Ecovida de Agroecologia. csu 47:56–63. doi: 10.4013/csu.2011.47.1.06 CrossRefGoogle Scholar
  74. Satterfield T, Gregory R, Klain SC et al (2013) Culture, intangibles and metrics in environmental management. J Environ Manage 117:103–114. doi: 10.1016/j.jenvman.2012.11.033 CrossRefGoogle Scholar
  75. Schewenius M, McPhearson T, Elmqvist T (2014) Opportunities for increasing resilience and sustainability of urban social–ecological systems: insights from the urbes and the cities and biodiversity outlook projects. AMBIO 43:434–444. doi: 10.1007/s13280-014-0505-z CrossRefGoogle Scholar
  76. Schwartz HJ, Feldkamp CR, Bungenstab DJ (2011) Energy efficiency, methane output, required carbon sequestration area and water productivity in extensive and semi-intensive beef production in South America: a comparison of ecological currencies. In: Behnassi M, Draggan S, Yaya S (eds) Global food insecurity. Springer, pp 257–267Google Scholar
  77. Seitzinger SP, Svedin U, Crumley CL et al (2012) Planetary stewardship in an urbanizing world: beyond city limits. AMBIO 41:787–794. doi: 10.1007/s13280-012-0353-7 CrossRefGoogle Scholar
  78. Seto KC, Ramankutty N (2016) Hidden linkages between urbanization and food systems. Science 352:943–945. doi: 10.1126/science.aaf7439 CrossRefGoogle Scholar
  79. Seto KC, Reenberg A, Boone CG et al (2012) Urban land teleconnections and sustainability. PNAS 109:7687–7692. doi: 10.1073/pnas.1117622109 CrossRefGoogle Scholar
  80. Shore C, Wright S (2015) Audit culture revisited. Curr Anthropol 56:421–444. doi: 10.1086/681534 CrossRefGoogle Scholar
  81. Stoeglehner G, Narodoslawsky M (2008) Implementing ecological footprinting in decision-making processes. Environ Impact Assess Rev 25:421–431. doi: 10.1016/j.landusepol.2007.10.002 Google Scholar
  82. Stoneham G, Chaudhri V, Ha A, Strappazzon L (2003) Auctions for conservation contracts: an empirical examination of Victoria’s BushTender trial. Aust J Agr Resour Econ 47:477–500. doi: 10.1111/j.1467-8489.2003.t01-1-00224.x CrossRefGoogle Scholar
  83. Sweeney BW, Bott TL, Jackson JK et al (2004) Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc Natl Acad Sci USA 101:14132–14137. doi: 10.1073/pnas.0405895101 CrossRefGoogle Scholar
  84. Szigeti C, Toth G, Szabo DR (2017) Decoupling—shifts in ecological footprint intensity of nations in the last decade. Ecol Indic 72:111–117. doi: 10.1016/j.ecolind.2016.07.034 CrossRefGoogle Scholar
  85. Taylor RW (2012) Urbanization, local government, and planning for sustainability. In: Sustainability science. Springer, New York, pp 293–313CrossRefGoogle Scholar
  86. Thibert J, Badami MG (2011) Estimating and communicating food system impacts: a case study in Montreal, Quebec. Ecolog Econ 70:1814–1821. doi: 10.1016/j.ecolecon.2011.05.008 CrossRefGoogle Scholar
  87. UN Habitat (2010) State of the world’s cities 2010/11—bridging the urban divide. Earthscan 220. doi: 10.1080/17535069.2011.579779
  88. United Nations, Department of Economic and Social Affairs, Population Division (2012) World Urbanization Prospects: The 2011 RevisionGoogle Scholar
  89. Van Den Bergh J, Grazi F (2010) On the policy relevance of ecological footprints. Ecol Monogr 44:4843–4844Google Scholar
  90. Vatn A (2010) An institutional analysis of payments for environmental services. Ecolog Econ 69:1245–1252. doi: 10.1016/j.ecolecon.2009.11.018 CrossRefGoogle Scholar
  91. Vergé XPC, Dyer JA, Desjardins RL, Worth D (2008) Greenhouse gas emissions from the Canadian beef industry. Agric Syst 98:126–134. doi: 10.1016/j.agsy.2008.05.003 CrossRefGoogle Scholar
  92. Verhofstadt E, Van Ootegem L, Defloor B, Bleys B (2016) Linking individuals’ ecological footprint to their subjective well-being. Ecolog Econ 127:80–89. doi: 10.1016/j.ecolecon.2016.03.021 CrossRefGoogle Scholar
  93. Wackernagel M, Silverstein J (2000) Big things first: focusing on the scale imperative with the ecological footprint. Ecolog Econ 32:391–394CrossRefGoogle Scholar
  94. Wackernagel M, Yount JD (1998) The ecological footprint: an indicator of progress toward regional sustainability. Environ Monit Assess 51:511–529CrossRefGoogle Scholar
  95. Wackernagel M, Schulz NB, Deumling D et al (2002) Tracking the ecological overshoot of the human economy. Proc Natl Acad Sci USA 99:9266–9271. doi: 10.1073/pnas.142033699 CrossRefGoogle Scholar
  96. Wackernagel M, Kitzes J, Moran D et al (2006) The Ecological Footprint of cities and regions: comparing resource availability with resource demand. Environ Urban 18:103–112. doi: 10.1177/0956247806063978 CrossRefGoogle Scholar
  97. Weber CL, Matthews HS (2008) Food-miles and the relative climate impacts of food choices in the United States. Environ Sci Technol 42:3508–3513. doi: 10.1021/es702969f CrossRefGoogle Scholar
  98. Wiedmann T, Barrett J (2010) A review of the ecological footprint indicator—perceptions and methods. Sustainability 2:1645–1693. doi: 10.3390/su2061645 CrossRefGoogle Scholar
  99. Winter M (2003) Embeddedness, the new food economy and defensive localism. J Rural Stud 19:23–32. doi: 10.1016/S0743-0167(02)00053-0 CrossRefGoogle Scholar
  100. Wunder S (2013) When payments for environmental services will work for conservation. Conserv Lett 6:230–237. doi: 10.1111/conl.12034 CrossRefGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • Mollie Chapman
    • 1
    Email author
  • Alicia LaValle
    • 2
  • George Furey
    • 3
  • Kai M. A. Chan
    • 1
  1. 1.Institute for Resources, Environment and SustainabilityUniversity of British ColumbiaVancouverCanada
  2. 2.Collaborative for Advanced Landscape Planning, Department of Forest Resources Management, Faculty of Forestry, Center for Interactive Research and SustainabilityUniversity of British ColumbiaVancouverCanada
  3. 3.Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulUSA

Personalised recommendations