Advertisement

Sustainability Science

, Volume 12, Issue 1, pp 31–44 | Cite as

Transdisciplinary co-design of scientific research agendas: 40 research questions for socially relevant climate engineering research

  • Masahiro Sugiyama
  • Shinichiro Asayama
  • Takanobu Kosugi
  • Atsushi Ishii
  • Seita Emori
  • Jiro Adachi
  • Keigo Akimoto
  • Masatomo Fujiwara
  • Tomoko Hasegawa
  • Yasushi Hibi
  • Kimiko Hirata
  • Toru Ishii
  • Takeshi Kaburagi
  • Yuki Kita
  • Shigeki Kobayashi
  • Atsushi Kurosawa
  • Manabu Kuwata
  • Kooiti Masuda
  • Makoto Mitsui
  • Taku Miyata
  • Hiroshi Mizutani
  • Sumie Nakayama
  • Kazuyo Oyamada
  • Takaaki Sashida
  • Miho Sekiguchi
  • Kiyoshi Takahashi
  • Yukari Takamura
  • Junichi Taki
  • Taketoshi Taniguchi
  • Hiroyuki Tezuka
  • Takahiro Ueno
  • Shingo Watanabe
  • Rie Watanabe
  • Naoyuki Yamagishi
  • Go Yoshizawa
Original Article
Part of the following topical collections:
  1. Climate Change Mitigation, Adaption, and Resilience

Abstract

Interest in climate engineering research has grown rapidly owing to the slow progress of international climate negotiations. As some scientists are proposing to expand research and conduct field tests, there is an emerging debate about whether and how it should proceed. It is widely accepted both by the supporters and critics that public engagement from the early stage of research is necessary. Nonetheless, most, if not all, of existing research projects of climate engineering were designed predominantly by experts. To produce socially relevant knowledge, and hence, pursue transdisciplinary research that integrates interdisciplinary research and public engagement, it is desirable for scientists to decide together with the public on what kind of research should be done. In this paper, we both as Japanese scientists and stakeholders collaboratively identify 40 socially relevant research questions on climate engineering with a particular emphasis on stratospheric aerosol injection, using a method designed to encourage science–policy collaboration. While we acknowledge some methodological problems and the difficulty in obtaining active participation from stakeholders, the list of identified questions covers broad interdisciplinary perspectives and diverse interests, and may provide an important foundation for future transdisciplinary research on climate engineering. Given the dynamic nature of climate change and policy responses, research agendas should be periodically and iteratively reviewed and updated through transdisciplinary processes.

Keywords

Transdisciplinary research Co-design of research agenda Climate engineering Stratospheric aerosol injection Public engagement 

Notes

Acknowledgments

We sincerely express our gratitude to William Sutherland for spending time with us and sharing his insights. We thank Kayoko Namba for her excellent logistical and research assistance. We thank Yosuke Arino and Ryo Moriyama for their advice on the workshop design. We also extend our gratitude to all of the contributors to the initial set of research questions. We thank two anonymous reviewers for their constructive criticisms. This project was supported by the Japan Science and Technology Agency (JST) Research Institute of Science and Technology for Society (RISTEX) as part of the Future Earth project.

Supplementary material

11625_2016_376_MOESM1_ESM.pdf (869 kb)
Supplementary material 1 (PDF 869 kb)
11625_2016_376_MOESM2_ESM.pdf (819 kb)
Supplementary material 2 (PDF 820 kb)
11625_2016_376_MOESM3_ESM.pdf (161 kb)
Supplementary material 3 (PDF 161 kb)

References

  1. Barrett S (2014) Solar geoengineering’s Brave New World: thoughts on the governance of an unprecedented technology. Rev Environ Econ Policy 8:249–269CrossRefGoogle Scholar
  2. Bodansky D (2013) The who, what, and wherefore of geoengineering governance. Clim Change 121(3):539–551CrossRefGoogle Scholar
  3. Boucher O, Forster PM, Gruber N, Ha-Duong M, Lawrence MG, Lenton TM, Maas A, Vaughan NE (2014) Rethinking climate engineering categorization in the context of climate change mitigation and adaptation. Wiley Interdiscipl Rev Clim Change 5(1):23–35CrossRefGoogle Scholar
  4. Cairns RC (2014) Climate geoengineering: issues of path-dependence and socio-technical lock-in. Wiley Interdiscipl Rev Clim Change 5(5):649–661CrossRefGoogle Scholar
  5. Caldeira K, Ricke KL (2013) Prudence on solar climate engineering. Nature Clim Change 3(11):941–942CrossRefGoogle Scholar
  6. Carr W, Preston CJ, Yung L, Szerszynski B, Keith DW, Mercer AM (2013) Public engagement on solar radiation management and why it needs to happen now. Clim Change 121(3):567–577CrossRefGoogle Scholar
  7. Caviezel C, Revermann C (2014) Climate engineering. Kann und soll man die Erderwärmung technisch eindämmen? edition sigma, Berlin, GermanyGoogle Scholar
  8. Clark WC (2007) Sustainability Science: a room of its own. Proc Natl Acad Sci USA 104:1737–1738CrossRefGoogle Scholar
  9. Corner A, Pidgeon N, Parkhill K (2012) Perceptions of geoengineering: public attitudes, stakeholder perspectives, and the challenge of “upstream” engagement. Wiley Interdiscipl Rev Clim Change 3(5):451–466CrossRefGoogle Scholar
  10. Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77(3):211–220CrossRefGoogle Scholar
  11. Fiorino DJ (1990) Citizen participation and environmental risk: a survey of institutional mechanisms. Sci Technol Hum Val 15(2):226–243CrossRefGoogle Scholar
  12. Funtowicz SO, Ravetz JR (1993) Science for the post-normal age. Futures 25(7):739–755CrossRefGoogle Scholar
  13. Future Earth (2013) Future Earth initial design: report of the Transition Team. International Council for Science (ICSU), Paris, FranceGoogle Scholar
  14. Future Earth (2014) Future Earth Strategic Research Agenda 2014. International Council for Science (ICSU). France, ParisGoogle Scholar
  15. Gardiner S (2010) Is “arming the future” with geoengineering really the lesser evil? Some doubts about the ethics of intentionally manipulating the climate system. In: Gardiner SM, Caney S, Jamieson D, Shue H (eds) Climate ethics: essential readings. Oxford University Press, OxfordGoogle Scholar
  16. Hamilton C (2013) Earthmasters: the dawn of the age of climate engineering. Yale University Press, New HavenGoogle Scholar
  17. Horton JB (2011) Geoengineering and the myth of unilateralism: pressures and prospects for international cooperation. Stanford J Law Sci Policy IV(May):56–69Google Scholar
  18. Hulme M (2014) Can science fix climate change?. Polity Press, CambridgeGoogle Scholar
  19. Ingram JSI, Wright HL, Foster L, Aldred T, Barling D, Benton TG, Berryman PM, Bestwick CS, Bows-Larkin A, Brocklehurst TF, Buttriss J, Casey J, Collins H, Crossley DS, Dolan CS, Dowler E, Edwards R, Finney KJ, Fitzpatrick JL, Fowler M, Garrett DA, Godfrey JE, Godley A, Griffiths W, Houlston EJ, Kaiser MJ, Kennard R, Knox JW, Kuyk A, Linter BR, Macdiarmid JI, Martindale W, Mathers JC, McGonigle DF, Mead A, Millar SJ, Miller A, Murray C, Norton IT, Parry S, Pollicino M, Quested TE, Tassou S, Terry LA, Tiffin R, van de Graaf P, Vorley W, Westby A, Sutherland WJ (2013) Priority research questions for the UK food system. Food Security 5(5):617–636CrossRefGoogle Scholar
  20. Intergovernmental Panel on Climate Change (IPCC) (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Meyer LA (eds)]. IPCC, Geneva, SwitzerlandGoogle Scholar
  21. Jahn T, Bergmann M, Keil F (2012) Transdisciplinarity: between mainstreaming and marginalization. Ecol Econ 79:1–10CrossRefGoogle Scholar
  22. Jones A, Haywood JM, Alterskjær K, Boucher O, Cole JNS, Curry CL, Irvine PJ, Ji D, Kravitz B, Kristjánsson JE, Moore JC, Niemeier U, Robock A, Schmidt H, Singh B, Tilmes S, Watanabe S, Yoon J-H (2013) The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res Atmos 118(17):9743–9752CrossRefGoogle Scholar
  23. Kates RW, Clark WC, Corell R, Hall JM, Jaeger CC, Lowe I, McCarthy JJ, Schellnhuber HJ, Bolin B, Dickson NM, Faucheux S, Gallopin GC, Grübler A, Huntley B, Jäger J, Jodha NS, Kasperson RE, Mabogunje A, Matson P, Mooney H, Moore BM III, O’Riordan T, Svedin U (2001) Sustainability science. Science 292(5517):641–642CrossRefGoogle Scholar
  24. Keith D (2013) A case for climate engineering. MIT Press, CambridgeGoogle Scholar
  25. Keith DW, MacMartin DG (2015) A temporary, moderate and responsive scenario for solar geoengineering. Nature Clim Change 5(3):201–206CrossRefGoogle Scholar
  26. Keith DW, Parson E, Morgan MG (2010) Research on global sun block needed now. Nature 463(7280):426–427CrossRefGoogle Scholar
  27. Klenk NL, Meehan K, Mendez Pinel SL, Lima PT, Kammen DM (2015) Stakeholders in climate science: beyond lip service? Science 350:743–744CrossRefGoogle Scholar
  28. Komiyama H, Takeuchi K (2006) Sustainability science: building a new discipline. Sustain Sci 1(1):1–6CrossRefGoogle Scholar
  29. Kosugi T (2013) Fail-safe solar radiation management geoengineering. Mitig Adapt Strategies Glob Chang 18:1141–1166CrossRefGoogle Scholar
  30. Kravitz B, Caldeira K, Boucher O, Robock A, Rasch PJ, Alterskjær K, Karam DB, Cole JNS, Curry CL, Haywood JM, Irvine PJ, Ji D, Jones A, Kristjánsson JE, Lunt DJ, Moore JC, Niemeier U, Schmidt H, Schulz M, Singh B, Tilmes S, Watanabe S, Yang S, Yoon J-H (2013) Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res Atmos 118(15):8320–8332CrossRefGoogle Scholar
  31. Lang DJ, Wiek A, Bergmann M, Stauffacher M, Martens P, Moll P, Swilling M, Thomas CJ (2012) Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain Sci 7(S1):25–43CrossRefGoogle Scholar
  32. Lin A (2013) Does geoengineering present a moral hazard? Ecol Law Q 40(3):673–712Google Scholar
  33. Linnér BO, Wibeck V (2015) Dual high-stake emerging technologies: a review of the climate engineering research literature. Wiley Interdiscipl Rev Clim Change 6(2):255–268CrossRefGoogle Scholar
  34. Lloyd ID, Oppenheimer M (2014) On the design of an international governance framework for geoengineering. Glob Environ Polit 14(2):45–63CrossRefGoogle Scholar
  35. Long JCS, Loy F, Morgan MG (2015) Start research on climate engineering. Nature 518(7537):29–31CrossRefGoogle Scholar
  36. Markusson N, Ginn F, Ghaleigh NS, Scott V (2014) “In case of emergency press here”: framing geoengineering as a response to dangerous climate change. Wiley Interdiscipl Rev Clim Change 5(2):281–290CrossRefGoogle Scholar
  37. McClellan J, Keith DW, Apt J (2012) Cost analysis of stratospheric albedo modification delivery systems. Environ Res Lett 7(3):034019CrossRefGoogle Scholar
  38. McCormack CG, Born W, Irvine PJ, Archterberg EP, Amano T, Ardron J, Foster PN, Gattuso J-P, Hawkins SJ, Hendy E, Kissling WD, Lluch-Cota SE, Murphy EJ, Ostle N, Owens NJP, Perry RI, Pörtner HO, Scholes RJ, Schurr FM, Schweiger O, Settele J, Smith RK, Smith S, Thompson J, Tittensor DP, van Kleunen M, Vivian C, Vohland K, Warren R, Watkinson AR, Widdicombe S, Williamson P, Woods E, Blackstock JJ, Sutherland WJ (2016) Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. J Integr Env Sci. doi: 10.1080/1943815X.2016.1159578 Google Scholar
  39. National Research Council (NRC) (2015) Climate intervention: reflecting sunlight to cool earth. The National Academies Press, Washington DC, USAGoogle Scholar
  40. Pahl-Wostl C, Giupponi C, Richards K, Binder C, de Sherbinin A, Sprinz D, Toonen T, van Bers C (2013) Transition towards a new global change science: requirements for methodologies, methods, data and knowledge. Environ Sci Policy 28:36–47CrossRefGoogle Scholar
  41. Parson EA, Keith DW (2013) End the deadlock on governance of geoengineering research. Science 339(6125):1278–1279CrossRefGoogle Scholar
  42. Pidgeon N, Parkhill K, Corner A, Vaughan N (2013) Deliberating stratospheric aerosols for climate geoengineering and the SPICE project. Nature Clim Change 3(5):451–457CrossRefGoogle Scholar
  43. Pitari G, Aquila V, Kravitz B, Robock A, Watanabe S, Cionni I, De Luca N, Di Genova G, Mancini E, Tilmes S (2014) Stratospheric ozone response to sulfate geoengineering: results from the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res Atmos 119(5):2629–2653CrossRefGoogle Scholar
  44. Polk M (2015) Transdisciplinary co-production: designing and testing a transdisciplinary research framework for societal problem solving. Futures 65:110–122CrossRefGoogle Scholar
  45. Preston CJ (2013) Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. Wiley Interdiscipl Rev Clim Change 4(1):23–37CrossRefGoogle Scholar
  46. Pretty J, Sutherland WJ, Ashby J, Auburn J, Baulcombe D, Bell M, Bentley J, Bickersteth S, Brown K, Burke J, Campbell H, Chen K, Crowley E, Crute I, Dobbelaere D, Edwards-Jones G, Funes-Monzote F, Godfray HCJ, Griffon M, Gypmantisiri P, Haddad L, Halavatau S, Herren H, Holderness M, Izac A, Jones M, Koohafkan P, Lal R, Lang T, McNeely J, Mueller A, Nisbett N, Noble A, Pingali P, Pinto Y, Rabbinge R, Ravindranath NH, Rola A, Roling N, Sage C, Settle W, Sha JM, Shiming L, Simons T, Smith P, Strzepeck K, Swaine H, Terry E, Tomich TP, Toulmin C, Trigo E, Twomlow S, Vis JK, Wilson J, Pilgrim S (2010) The top 100 questions of importance to the future of global agriculture. Int J Agr Sustain 8(4):219–236CrossRefGoogle Scholar
  47. Rayner S, Heyward C, Kruger T, Pidgeon N, Redgwell C, Savulescu J (2013) The Oxford Principles. Clim Change 121(3):499–512CrossRefGoogle Scholar
  48. Reynolds J (2015) A critical examination of the climate engineering moral hazard and risk compensation concern. Anthropocene Rev 2(2):174–191CrossRefGoogle Scholar
  49. Robock A (2008) 20 reasons why geoengineering may be a bad idea. Bul. Atomic Scientists 64:14–18CrossRefGoogle Scholar
  50. Robock, A (2014) Stratospheric aerosol geoengineering. Issues Env. Sci. Tech. (special issue “Geoengineering of the Climate System”) 38:162–185Google Scholar
  51. Robock A, Marquardt A, Kravitz B, Stenchikov G (2009) Benefits, risks, and costs of stratospheric geoengineering. Geophys Res Lett 36(19):L19703CrossRefGoogle Scholar
  52. Robock A, Bunzl M, Kravitz B, Stenchikov GL (2010) A test for geoengineering? Science 327(5965):530–531CrossRefGoogle Scholar
  53. Royal Society (2009) Geoengineering the climate: science, governance and uncertainty. Royal Society, LondonGoogle Scholar
  54. Schäfer S, Irvine PJ, Hubert A-M, Reichwein D, Low S, Stelzer H, Maas A, Lawrence MG (2013) Field tests of solar climate engineering. Nature Clim Change 3(9):766–767CrossRefGoogle Scholar
  55. Schäfer S, Lawrence M, Stelzer H, Born W, Low S, Aaheim A, Adriázola P, Betz G, Boucher O, Carius A, Devine-Right P, Gullberg A T, Haszeldine S, Haywood J, Houghton K, Ibarrola R, Irvine P, Kristjansson J-E, Lenton T, Link JSA, Maas A, Meyer L, Muri H, Oschlies A, Proelß A, Rayner T, Rickels W, Ruthner L, Scheffran J, Schmidt H, Schulz M, Scott V, Shackley S, Tänzler D, Watson M, Vaughan N (2015) The European Transdisciplinary Assessment of Climate Engineering (EuTRACE): removing greenhouse gases from the atmosphere and reflecting sunlight away from earth. Funded by the European Union’s Seventh Framework Programme under Grant Agreement 306993. Available online at http://www.iass-potsdam.de/sites/default/files/files/rz_150715_eutrace_digital_0.pdf
  56. Scholz RW, Steiner G (2015a) The real type and ideal type of transdisciplinary processes: part I—theoretical foundations. Sustain Sci 10(4):527–544CrossRefGoogle Scholar
  57. Scholz RW, Steiner G (2015b) The real type and ideal type of transdisciplinary processes: part II—what constraints and obstacles do we meet in practice? Sustain Sci 10(4):653–671CrossRefGoogle Scholar
  58. Sillmann J, Lenton TM, Levermann A, Ott K, Hulme M, Benduhn F, Horton JB (2015) Climate emergencies do not justify engineering the climate. Nature Clim. Change 5:290–292CrossRefGoogle Scholar
  59. Stilgoe J, Owen R, Macnaghten P (2013) Developing a framework for responsible innovation. Res Policy 42(9):1568–1580CrossRefGoogle Scholar
  60. Stirling A (2008) Opening up” and “closing down. Sci Technol Hum Val 33(2):262–294CrossRefGoogle Scholar
  61. Stokes DE (1997) Pasteur’s Quadrant: Basic Science and Technological Innovation. Brookings Institution, Washington, DCGoogle Scholar
  62. Sutherland WJ, Armstrong-Brown S, Armsworth PR, Tom B, Brickland J, Campbell CD, Chamberlain DE, Cooke AI, Dulvy NK, Dusic NR, Fitton M, Freckleton RP, Godfray HCJ, Grout N, Harvey HJ, Hedley C, Hopkins JJ, Kift NB, Kirby J, Kunin WE, MacDonald DW, Marker B, Naura M, Neale AR, Oliver T, Osborn D, Pullin AS, Shardlow MEA, Showler DA, Smith PL, Smithers RJ, Solandt J, Spencer J, Spray CJ, Thomas CD, Thompson J, Webb SE, Yalden DW, Watkinson AR (2006) The identification of 100 ecological questions of high policy relevance in the UK. J Appl Ecol 43(4):617–627CrossRefGoogle Scholar
  63. Sutherland WJ, Fleishman E, Mascia MB, Pretty J, Rudd MA (2011) Methods for collaboratively identifying research priorities and emerging issues in science and policy. Method Ecol Evol 2(3):238–247CrossRefGoogle Scholar
  64. Sutherland WJ, Bellingan L, Bellingham JR, Blackstock JJ, Bloomfield RM, Bravo M, Cadman VM, Cleevely DD, Clements A, Cohen AS, Cope DR, Daemmrich AA, Devecchi C, Anadon LD, Denegri S, Doubleday R, Dusic NR, Evans RJ, Feng WY, Godfray HCJ, Harris P, Hartley SE, Hester AJ, Holmes J, Hughes A, Hulme M, Irwin C, Jennings RC, Kass GS, Littlejohns P, Marteau TM, McKee G, Millstone EP, Nuttall WJ, Owens S, Parker MM, Pearson S, Petts J, Ploszek R, Pullin AS, Reid G, Richards KS, Robinson JG, Shaxson L, Sierra L, Smith BG, Spiegelhalter DJ, Stilgoe J, Stirling A, Tyler CP, Winickoff DE, Zimmern RL (2012) A collaboratively-derived science-policy research agenda. PLoS ONE 7(3):3–7Google Scholar
  65. Sutherland WJ, Goulden C, Bell K, Bennett F, Burall S, Bush M, Callan S, Catcheside K, Corner J, D’arcy CT, Dickson M, Dolan JA, Doubleday R, Eckley BJ, Foreman ET, Foster R, Gilhooly L, Gray AM, Hall AC, Harmer M, Hastings A, Johnes C, Johnstone M, Kelly P, Kenway P, Lee N, Moore R, Ouchikh J, Plunkett J, Rowlingson K, Paul AS, Sefton TAJ, Shaheen F, Sodha S, Stearn J, Stewart K, Stone E, Tinsley M, Tomsett RJ, Tyrer P, Unwin J, Wall DG, Wollner PKA (2013) 100 Questions: identifying research priorities for poverty prevention and reduction. J Poverty Soc Just 21(3):189–205Google Scholar
  66. Tilmes S, Fasullo J, Lamarque J-F, Marsh DR, Mills M, Alterskjær K, Muri H, Kristjánsson JE, Boucher O, Schulz M, Cole JNS, Curry CL, Jones A, Haywood J, Irvine PJ, Ji D, Moore JC, Karam DB, Kravitz B, Rasch PJ, Singh B, Yoon J-H, Niemeier U, Schmidt H, Robock A, Yang S, Watanabe S (2013) The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res Atmos 118(19):11036–11058CrossRefGoogle Scholar
  67. Tuana N, Sriver RL, Svoboda T, Olson R, Irvine PJ, Haqq-Misra J, Keller K (2012) Towards integrated ethical and scientific analysis of geoengineering: a research agenda. Ethics Policy Environ 15(2):136–157CrossRefGoogle Scholar
  68. Victor DG, Morgan MG, Apt J, Steinbruner J, Ricke K (2009) The geoengineering option: a last resort against global warming? Foreign Aff 88(2):64–76Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Masahiro Sugiyama
    • 1
  • Shinichiro Asayama
    • 2
  • Takanobu Kosugi
    • 3
  • Atsushi Ishii
    • 4
  • Seita Emori
    • 5
  • Jiro Adachi
    • 6
  • Keigo Akimoto
    • 7
  • Masatomo Fujiwara
    • 8
  • Tomoko Hasegawa
    • 2
  • Yasushi Hibi
    • 9
  • Kimiko Hirata
    • 10
  • Toru Ishii
    • 11
  • Takeshi Kaburagi
    • 12
  • Yuki Kita
    • 13
    • 14
  • Shigeki Kobayashi
    • 15
  • Atsushi Kurosawa
    • 16
  • Manabu Kuwata
    • 17
  • Kooiti Masuda
    • 18
  • Makoto Mitsui
    • 19
  • Taku Miyata
    • 20
  • Hiroshi Mizutani
    • 21
  • Sumie Nakayama
    • 22
  • Kazuyo Oyamada
    • 23
  • Takaaki Sashida
    • 24
  • Miho Sekiguchi
    • 25
  • Kiyoshi Takahashi
    • 2
  • Yukari Takamura
    • 26
  • Junichi Taki
    • 27
  • Taketoshi Taniguchi
    • 1
  • Hiroyuki Tezuka
    • 28
  • Takahiro Ueno
    • 29
  • Shingo Watanabe
    • 30
  • Rie Watanabe
    • 31
  • Naoyuki Yamagishi
    • 32
  • Go Yoshizawa
    • 33
  1. 1.Policy Alternatives Research InstituteThe University of TokyoTokyoJapan
  2. 2.Center for Social and Environmental Systems ResearchNational Institute for Environmental StudiesTsukubaJapan
  3. 3.College of Policy ScienceRitsumeikan UniversityIbarakiJapan
  4. 4.Center for Northeast Asian StudiesTohoku UniversitySendaiJapan
  5. 5.Center for Global Environmental ResearchNational Institute for Environmental StudiesTsukubaJapan
  6. 6.Japan Center for a Sustainable Environment and SocietyTokyoJapan
  7. 7.Systems Analysis GroupResearch Institute of Innovative Technology for the EarthKizugawaJapan
  8. 8.Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  9. 9.Conservation International JapanTokyoJapan
  10. 10.Tokyo OfficeKiko NetworkTokyoJapan
  11. 11.The Asahi Shimbun CompanyTokyoJapan
  12. 12.Research and Development BureauMinistry of Education, Culture, Sports, Science and TechnologyTokyoJapan
  13. 13.Japan Youth Ecology LeagueTokyoJapan
  14. 14.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  15. 15.Transport Institute of Central JapanNagakuteJapan
  16. 16.Research and Development DivisionThe Institute of Applied EnergyTokyoJapan
  17. 17.Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  18. 18.Department of Integrated Climate Change Projection ResearchJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  19. 19.The Yomiuri ShimbunTokyoJapan
  20. 20.Siting and Environment DepartmentThe Federation of Electric Power CompaniesTokyoJapan
  21. 21.College of Bioresource SciencesNihon UniversityFujisawaJapan
  22. 22.Corporate Planning and Administration DepartmentElectric Power Development Co., Ltd.TokyoJapan
  23. 23.Consulting GroupMizuho Information and Research Institute, Inc.TokyoJapan
  24. 24.Industrial Science and Technology Policy and Environment BureauMinistry of Economy, Trade and IndustryTokyoJapan
  25. 25.Graduate School of Marine Science and TechnologyTokyo University of Marine Science and TechnologyTokyoJapan
  26. 26.Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan
  27. 27.Nikkei, Inc.TokyoJapan
  28. 28.Technology Planning DepartmentJFE Steel CorporationTokyoJapan
  29. 29.Socio-economic Research CenterCentral Research Institute of Electric Power Industry100-8126Japan
  30. 30.Department of Seamless Environmental Prediction ResearchJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  31. 31.Faculty of International Studies and Regional DevelopmentThe University of Niigata PrefectureNiigataJapan
  32. 32.Climate and Energy GroupWorld Wide Fund for Nature JapanTokyoJapan
  33. 33.Graduate School of MedicineOsaka UniversitySuitaJapan

Personalised recommendations