Sustainability Science

, Volume 11, Issue 4, pp 575–590 | Cite as

A review of vulnerability indicators for deltaic social–ecological systems

  • Zita Sebesvari
  • Fabrice G. Renaud
  • Susanne Haas
  • Zachary Tessler
  • Michael Hagenlocher
  • Julia Kloos
  • Sylvia Szabo
  • Alejandro Tejedor
  • Claudia Kuenzer
Special Feature: Review Article Sustainable Deltas: Livelihoods, Ecosystem Services, and Policy Implications
Part of the following topical collections:
  1. Special Feature: Sustainable Deltas: Livelihoods, Ecosystem Services, and Policy Implications

Abstract

The sustainability of deltas worldwide is under threat due to the consequences of global environmental change (including climate change) and human interventions in deltaic landscapes. Understanding these systems is becoming increasingly important to assess threats to and opportunities for long-term sustainable development. Here, we propose a simplified, yet inclusive social–ecological system (SES)-centered risk and vulnerability framework and a list of indicators proven to be useful in past delta assessments. In total, 236 indicators were identified through a structured review of peer-reviewed literature performed for three globally relevant deltas—the Mekong, the Ganges–Brahmaputra–Meghna and the Amazon. These are meant to serve as a preliminary “library” of potential indicators to be used for future vulnerability assessments. Based on the reviewed studies, we identified disparities in the availability of indicators to populate some of the vulnerability domains of the proposed framework, as comprehensive social–ecological assessments were seldom implemented in the past. Even in assessments explicitly aiming to capture both the social and the ecological system, there were many more indicators for social susceptibility and coping/adaptive capacities as compared to those relevant for characterizing ecosystem susceptibility or robustness. Moreover, there is a lack of multi-hazard approaches accounting for the specific vulnerability profile of sub-delta areas. We advocate for more comprehensive, truly social–ecological assessments which respond to multi-hazard settings and recognize within-delta differences in vulnerability and risk. Such assessments could make use of the proposed framework and list of indicators as a starting point and amend it with new indicators that would allow capturing the complexity as well as the multi-hazard exposure in a typical delta SES.

Keywords

Sustainable deltas Social–ecological systems Vulnerability assessment frameworks Indicators Multiple hazards 

Supplementary material

11625_2016_366_MOESM1_ESM.pdf (290 kb)
Supplementary material 1 (PDF 289 kb)
11625_2016_366_MOESM2_ESM.pdf (190 kb)
Supplementary material 2 (PDF 190 kb)
11625_2016_366_MOESM3_ESM.pdf (264 kb)
Supplementary material 3 (PDF 263 kb)
11625_2016_366_MOESM4_ESM.pdf (37 kb)
Supplementary material 4 (PDF 37 kb)
11625_2016_366_MOESM5_ESM.pdf (188 kb)
Supplementary material 5 (PDF 188 kb)

References

  1. Abdullah HM, Mahboob MG, Banu MR, Seker DZ (2013) Monitoring the drastic growth of ship breaking yards in Sitakunda: a threat to the coastal environment of Bangladesh. Environ Monit Assess 185:3839–3851. doi:10.1007/s10661-012-2833-4 CrossRefGoogle Scholar
  2. Asare-Kyei AK, Kloos J, Renaud FG (2015) Multi-scale participatory indicator development approaches for climate change risk assessment in West Africa. Int J Disaster Risk Reduct 11:13–34. doi:10.1016/j.ijdrr.2014.11.001 CrossRefGoogle Scholar
  3. Auerbach LW, Goodbred SL Jr, Mondal DR, Wilson CA, Ahmed KR, Roy K, Steckler MS, Small C et al (2015) Flood risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal delta plain. Nat Clim Chang 5(2):153–157. doi:10.1038/nclimate2472 CrossRefGoogle Scholar
  4. Balica SF, Wright NG, van der Meulen F (2012) A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat Hazards 64:73–105. doi:10.1007/s11069-012-0234-1 CrossRefGoogle Scholar
  5. Bhattacharyya R et al (2003) High arsenic groundwater: mobilization, metabolism and mitigation–an overview in the Bengal Delta Plain. Mol Cell Biochem 253(1/2):347–355CrossRefGoogle Scholar
  6. Bhuiyan MJAN, Dutta D (2011) Analysis of flood vulnerability and assessment of the impacts in coastal zones of Bangladesh due to potential sea-level rise. Nat Hazards 61:729–743. doi:10.1007/s11069-011-0059-3 CrossRefGoogle Scholar
  7. Birkmann J (2013) (Ed) Measuring vulnerability to natural hazards: towards disaster resilient societies, 2nd edn, United Nations University, Tokyo, New York, ParisGoogle Scholar
  8. Birkmann J, Garschagen G, Tuan Binh NT (2010) Vulnerability profiles with respect to present and future water-related hazards in the Vietnamese Mekong Delta–providing the information-base for successful coping and adaptation within the framework of integrated water resources management. WISDOM Vulnerability Assessment. Available from http://www.wisdom.caf.dlr.de/sites/wisdom/files/images/results/101007_wisdom-va-proifles_new_map_compressed_names_new.pdf
  9. Birkmann J, Cardona OD, Carreño ML, Barbat AH, Pelling M, Schneiderbauer S, Kienberger S, Keiler M, Alexander D, Zeil P, Welle T (2013) Framing vulnerability, risk and societal responses: the MOVE framework. Nat Hazards 67:193–211. doi:10.1007/s11069-013-0558-5 CrossRefGoogle Scholar
  10. Birkmann J, Garschagen M, Mucke P, Schauder A, Seibert T, Welle T, Rhyner J, Kohler S, Loster T, Reinhard D, Matuschke I (2014) World Risk Report 2014. Bündnis Entwicklung Hilft and UNU-EHSGoogle Scholar
  11. Boateng I (2012) GIS assessment of coastal vulnerability to climate change and coastal adaption planning in Vietnam. J Coast Conservat 16:25–36. doi:10.1007/s11852-011-0165-0 CrossRefGoogle Scholar
  12. Bollin C, Hidajat R (2006) Community-based disaster risk index: pilot implementation in Indonesia, towards disaster resilient societies. In: Birkmann J (ed) Measuring vulnerability to natural hazards. UNU-Press, Tokyo, New York, ParisGoogle Scholar
  13. Bosma R, Ahmad SS, Paul Z, Aditya A, Visser L (2012) Challenges of a transition to a sustainably managed shrimp culture agro-ecosystem in the Mahakam Delta, East Kalimantan, Indonesia. Welt Ecol Manag 20:89–99. doi:10.1007/s11273-011-9244-0 CrossRefGoogle Scholar
  14. Brondizio ES, Vogt N, Mansur A, Anthony E, Costa SM, Hetrick SS (2016) A conceptual framework for analyzing deltas as coupled social–ecological systems: an example from the Amazon River Delta. Sustain SciGoogle Scholar
  15. Bucx T, Marchand MA, Makaske A, van de Guchte C (2010) Comparative assessment of the vulnerability, and resilience of 10 deltas – synthesis report. Delta Alliance report number 1. Delta Alliance International, Delft-Wageningen, The NetherlandsGoogle Scholar
  16. Buschmann J, Berg M (2009) Impact of Sulfate reduction on the scale of arsenic contamination in groundwater of the Mekong, Bengal and Red River Deltas. Appl Geochem 24:1278–1286. doi:10.1016/j.apgeochem.2009.04.002 CrossRefGoogle Scholar
  17. Buschmann J, Berg M, Stengel C, Winkel L, Sampson ML, Trang PTK, Viet PH (2008) Contamination of drinking water resources in the Mekong Delta Floodplains: arsenic and other trace metals pose serious health risks to population. Environ Int 34:756–764. doi:10.1016/j.envint.2007.12.025 CrossRefGoogle Scholar
  18. Carvalho FP, Villeneuve JP, Cattini C, Tolosa I, Thuan Dao Dinh, Nhan Dang Duc (2008) Agrochemical and polychlorobyphenyl (PCB) residues in the Mekong River Delta, Vietnam. Marine Poll Bull 56:1476–1485. doi:10.1016/j.marpolbul.2008.04.042 CrossRefGoogle Scholar
  19. Chatterjee D, Halder D, Majumder S, Biswas A, Nath B, Bhattacharya P, Bhowmick S, Mukherjee-Goswami A, Saha D, Hazra R, Maity PB, Chatterjee D, Mukherjee A, Bundschuh J (2010) Assessment of arsenic exposure from groundwater and rice in Bengal Delta Region, West Bengal, India. Water Res 44:5803–5812. doi:10.1016/j.watres.2010.04.007 CrossRefGoogle Scholar
  20. Collins AE (2003) Vulnerability to coastal cholera ecology. Soc Sci Med 57:1397–1407. doi:10.1016/S0277-9536(02)00519-1 CrossRefGoogle Scholar
  21. Damm M (2010) Mapping social–ecological Vulnerability to flooding: a sub-national approach to Germany. Graduate Research Series 3, UNU-EHS, Bonn, p 1–85. (ISBN-10: 393992346X) Google Scholar
  22. Dang NM, Babel MS, Luong HT (2011) Evaluation of food risk parameters in the day river flood diversion area, red river delta, Vietnam. Nat Hazards 56:169–194. doi:10.1007/s11069-010-9558-x CrossRefGoogle Scholar
  23. Dang HL, Li E, Nuberg I, Bruwer J (2013) Farmers’ assessments of private adaptive measures to climate change and influential factors: a study in the Mekong Delta, Vietnam. Nat Hazards 71:385–401. doi:10.1007/s11069-013-0931-4 CrossRefGoogle Scholar
  24. Dang HL, Li E, Nuberg I, Bruwer J (2014) Understanding farmers’ adaptation intention to climate change: a structural equation modelling study in the Mekong Delta, Vietnam. Environ Sci Policy 41:11–22. doi:10.1016/j.envsci.2014.04.002 CrossRefGoogle Scholar
  25. Dasgupta S, Laplante B, Murray S, Wheeler D (2011) Exposure of developing countries to sea-level rise and storm surges. Clim Chang 106:567–579. doi:10.1007/s10584-010-9959-6 CrossRefGoogle Scholar
  26. de Andrade MMN, Szlafsztein CF, Souza-Filho PWM, Araújo ADR, Gomes MKT (2010) A socioeconomic and natural vulnerability index for oil spills in an Amazonian harbor: a case study using GIS and remote sensing. J Environ Manage 91:1972–1980. doi:10.1016/j.jenvman.2010.04.016 CrossRefGoogle Scholar
  27. Dearing JA, Acma B, Bub S, Chambers FM, Chen X, Cooper J, Crook D, Dong XH et al (2015) social–ecological systems in the Anthropocene: the need for integrating social and biophysical records at regional scales. Anthropocene Rev. doi:10.1177/2053019615579128 Google Scholar
  28. Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M, Agwe J, Buys P, Kjekstad O et al. (2005) Natural disaster hotspots: a global risk analysis, The World Bank, Washington D.C., (ISBN 0-8213-5930-4) Google Scholar
  29. Epstein G, Vogt JM, Mincey SK, Cox M, Fischer B (2013) Missing ecology: integrating ecological perspectives with the social–ecological system framework. Int J Commons 7:432–453. doi:10.18352/ijc.371 CrossRefGoogle Scholar
  30. Ericson JP, Vörösmarty CJ, Dingman SL, Ward LG, Meybeck M (2006) Effective sea-level rise and deltas: causes of change and human dimension implications. Glob Planet Change 50:63–82. doi:10.1016/j.gloplacha.2005.07.004 CrossRefGoogle Scholar
  31. Eriksen SH, Kelly PM (2006) Developing credible vulnerability indicators for climate adaptation policy assessment. Mitig Adapt Strategies Glob Chang 12:495–524. doi:10.1007/s11027-006-3460-6 CrossRefGoogle Scholar
  32. Few R, Iain L, Hunter P, Pham GT (2013) Seasonality, disease and behavior: using multiple methods to explore socio-environmental health risks in the Mekong Delta. Social Sci Med 80(2013):1–9. doi:10.1016/j.socscimed.2012.12.027 CrossRefGoogle Scholar
  33. Foufoula-Georgiou E et al. (34 co-authors) (2013) A vision for a coordinated effort on delta sustainability in Deltas: Landforms, Ecosystems and Human Activities. 358:3–11, IAHS Publications, GothenburgGoogle Scholar
  34. Garschagen M (2014) Risky change? Vulnerability and adaptation between climate change and transformation dynamics in Can Tho City, Vietnam. Steiner 15, StuttgartGoogle Scholar
  35. Gebhardt S, Huth J, Nguyen LD, Roth A, Kuenzer C (2012) A Comparison of TerraSAR-X Quadpol Backscattering with RapidEye Multispectral Vegetation Indices over Rice Fields in the Mekong Delta, Vietnam. Int J Remote Sens 33:7644–7661. doi:10.1080/01431161.2012.702233 CrossRefGoogle Scholar
  36. Giosan L, Syvitski J, Constantinescu S, Day J (2014) Climate change: protect the world’s deltas. Nat News 516:31–33CrossRefGoogle Scholar
  37. Hanh HT, Kim KW, Bang S, Hoa NM (2011) Community exposure to arsenic in the Mekong River Delta, Southern Vietnam. J Environ Monitor 13:2025–2032. doi:10.1039/C1EM10037H CrossRefGoogle Scholar
  38. Haruyama S, Shida K (2008) Geomorphologic Land Classification Map of the Mekong Delta Utilizing JERS-1 SAR Images. Hydrol Process 22:1373–1381. doi:10.1002/hyp.6946 CrossRefGoogle Scholar
  39. Herbst S, Benedikter S, Koester U, Phan N, Berger C, Rechenburg A, Kistemann T (2009) Perceptions of Water, sanitation and health: a Case study from the Mekong Delta, Vietnam. Water Sci Technol 60:699. doi:10.2166/wst.2009.442 CrossRefGoogle Scholar
  40. IMHEN (2010) Climate change impact and adaptation study in the Mekong Delta–Part A, final report: climate change vulnerability and risk assessment study for Ca Mau and Kien Giang Provinces, VietnamGoogle Scholar
  41. Instituto Brasileiro de Geografia e Estatistica (IBGE) (2010) “2010 Census online.” Available at http://www.ibge.gov.br.Accessed 01, Feb, 2016
  42. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, V Barros, TF Stocker, D Qin, DJ Dokken, KL Ebi, MD Mastrandrea, KJ Mach, G-K. Plattner, SK Allen, M Tignor, and PM Midgley (eds) a special report of working Groups I and II of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, and New York, p 582Google Scholar
  43. IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. In: Field CB, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea, TE Bilir, M Chatterjee, KL Ebi, YO Estrada, RC Genova, B Girma, ES Kissel, AN Levy, S MacCracken, PR Mastrandrea, and LL White (eds) Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , Cambridge University, Cambridge and New York, p 1132Google Scholar
  44. Islam MA, Sakakibara H, Karim MR, Sekine M (2011) Evaluation of risk communication for rural water supply management: a case study of a coastal area of Bangladesh. J Risk Res 14:1237–1262. doi:10.1080/13669877.2011.574315 CrossRefGoogle Scholar
  45. Islam MN, Malak MA, Islam MN (2013) Community-based disaster risk and vulnerability models of a coastal municipality in Bangladesh. Nat Hazards 69:2083–2103. doi:10.1007/s11069-013-0796-6 CrossRefGoogle Scholar
  46. Islam MM, Sallu S, Hubacek K, Paavola J (2014a) Limits and barriers to adaptation to climate variability and change in Bangladeshi coastal fishing communities. Mar Policy 43:208–216. doi:10.1016/j.marpol.2013.06.007 CrossRefGoogle Scholar
  47. Islam MM, Sallu S, Hubacek K, Paavola J (2014b) Vulnerability of fishery-based livelihoods to the impacts of climate variability and change: insights from coastal Bangladesh. Reg Environ Change 14:281–294. doi:10.1007/s10113-013-0487-6 CrossRefGoogle Scholar
  48. Jen E (2003) Stable or robust? What’s the difference? Complexity 8:12–18. doi:10.1002/cplx.10077 CrossRefGoogle Scholar
  49. Kloos J, Asare-Kyei D, Pardoe J, Renaud FG (2015) Towards the development of an adapted multi-hazard risk assessment framework for the West Sudanian Savanna Zone. UNU-EHS Publication 11:4–26Google Scholar
  50. Kuenzer C, Renaud F (2012) Climate and environmental changes in river deltas globally: expected impacts, resilience, and adaptation. In: Renaud F, Kuenzer C (eds) The Mekong delta system: Interdisciplinary analyses of a river delta. Springer Environmental Science and Engineering, Dordrecht, pp 7–47CrossRefGoogle Scholar
  51. Lara RJ, Neogi SB, Islam MS, Mahmud ZH, Yamasaki S, Nair GB (2009) Influence of catastrophic climatic events and human waste on Vibrio distribution in the Karnaphuli Estuary, Bangladesh. EcoHealth 6:279–286. doi:10.1007/s10393-009-0257-6 CrossRefGoogle Scholar
  52. MA Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DCGoogle Scholar
  53. Mahmud T, Prowse M (2012) Corruption in cyclone preparedness and relief efforts in coastal Bangladesh: lessons for climate adaptation? Glob Environ Chang 22:933–943. doi:10.1016/j.gloenvcha.2012.07.003 CrossRefGoogle Scholar
  54. Mai CV, Stive MJF, Van Gelder PHAJM (2009) Coastal protection strategies for the Red River Delta. J Coast Res 251:105–116. doi:10.2112/07-0888.1 CrossRefGoogle Scholar
  55. Mallick B, Rahaman KR, Vogt J (2011) Coastal livelihood and physical infrastructure in Bangladesh after cyclone Aila. Mitig Adapt Strateg Glob Change 16:629–648. doi:10.1007/s11027-011-9285-y CrossRefGoogle Scholar
  56. Mansur AV, Brondizio ES, Roy S, Hetrick S, Vogt N, Newton A (2016) An assessment of urban vulnerability in the Amazon Delta and Estuary: a multi-criterion index of flood exposure, socio-economic conditions and infrastructure. Sust Sci. doi:10.1007/s11625-016-0355-7 Google Scholar
  57. Meier KJ (2009) Policy theory, policy theory everywhere: ravings of a deranged policy scholar. Policy Stud J 37:5–11. doi:10.1111/j.1541-0072.2008.00291.x CrossRefGoogle Scholar
  58. Mele PV, Cuc NTT, Vanhuis A (2012) Direct and Indirect Influences of the Weaver Ant Oecophylla Smaragdina on Citrus Farmers’ Pest Perceptions and Management Practices in the Mekong Delta, Vietnam. Int J Pest Manage 48:225–232. doi:10.1080/09670870110118713 CrossRefGoogle Scholar
  59. Minh NH, Minh TB, Kajiwara N, Kunisue T, Iwata H, Viet PH, Tu NPC, Tuyen BC, Tanabe S (2007) Pollution sources and occurrences of selected persistent organic pollutants (POPs) in sediments of the Mekong River delta, South Vietnam. Chemosphere 67:1794–1801. doi:10.1016/j.chemosphere.2006.05.144 CrossRefGoogle Scholar
  60. Moglia M, Neumann LE, Alexander KS, Nguyen MN, Sharma AK, Cook S, Trung NH, Tuan DDA (2012) Application of the Water Needs Index: Can Tho City, Mekong Delta, Vietnam. J Hydrol 468–469:203–212. doi:10.1016/j.jhydrol.2012.08.036 CrossRefGoogle Scholar
  61. Mondal M, Wasimi S (2007) Evaluation of Risk-Related Performance in Water Management for the Ganges Delta of Bangladesh. J Water Resour Plann Manage 133:179–187. doi:10.1061/(ASCE)0733-9496(2007)133:2(179) CrossRefGoogle Scholar
  62. Mousavi ME, Irish JL, Frey AE, Oliveira F, Edge BL (2011) Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding. Clim Chang 104:575–597. doi:10.1007/s10584-009-9790-0 CrossRefGoogle Scholar
  63. Nguyen TTH, De Bie CAJM, Ali A, Smaling EMA, Chu TH (2012) Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. Int J Remote Sens 33:415–434. doi:10.1080/01431161.2010.532826 CrossRefGoogle Scholar
  64. Nicholls RJ, Wong PP, Burkett V, Woodroffe CD, Hay J (2008) Climate change and coastal vulnerability assessment: scenarios for integrated assessment. Sustain Sci 3:89–102. doi:10.1007/s11625-008-0050-4 CrossRefGoogle Scholar
  65. Noble IR, S Huq, YA Anokhin, J Carmin, D Goudou, FP Lansigan, B Osman-Elasha, A Villamizar (2014) Adaptation needs and options. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. In: Field CB, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea, TE Bilir, M Chatterjee, KL Ebi, YO Estrada, RC Genova, B Girma, ES Kissel, AN Levy, S MacCracken, PR Mastrandrea, and LL White (eds). Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University, Cambridge, United Kingdom and New York, p. 833–868Google Scholar
  66. Oliveira SMO, Pereira LCC, Vila-Concejo A, Gorayeb A, de Sousa RC, Souza-Filho PWM, Costa RM (2011) Natural and anthropogenic impacts on a macrotidal sandy beach of the Brazilian Amazon (Ajuruteua, Para): guidelines for coastal management. J Coast Res SI 64:1385–1389Google Scholar
  67. Palamenghi L, Schwenk T, Spiess V, Kudrass HR (2011) Seismostratigraphic analysis with centennial to decadal time resolution of the sediment sink in the Ganges-Brahmaputra subaqueous delta. Cont Shelf Res 31:712–730. doi:10.1016/j.csr.2011.01.008 CrossRefGoogle Scholar
  68. Parvin GA, Shaw R (2013) Microfinance Institutions and a coastal community’s disaster risk reduction, response, and recovery process: a Case Study of Hatiya, Bangladesh. Disasters 37:165–184. doi:10.1111/j.1467-7717.2012.01292.x CrossRefGoogle Scholar
  69. Paul SK, Paul BK, Routray JK (2012) Post-Cyclone Sidr nutritional status of women and children in coastal Bangladesh: an empirical study. Nat Hazards 64:19–36. doi:10.1007/s11069-012-0223-4 CrossRefGoogle Scholar
  70. Peduzzi P, Dao H, Herold C, Mouton F (2009) Assessing global exposure and vulnerability towards natural hazards: the disaster risk index. Nat Hazard Earth Sys 9:1149–1159. doi:10.5194/nhess-9-1149-2009 CrossRefGoogle Scholar
  71. Pham LH, Au TB, Bliyzzard L, Truong NB, Schmidt MD, Granger RH, Dwyer T (2009) Prevalence of risk factors for non-communicable diseases in the Mekong Delta, Vietnam: results from a STEPS survey. BMC Public Health 9:291. doi:10.1186/1471-2458-9-291 CrossRefGoogle Scholar
  72. Pruszak Z, Szmytkiwicz M, Hung NM, Van Ninh P (2002) Coastal processes in the Red River Delta Area, Vietnam. Coast Eng 44:97–126. doi:10.1142/S0578563402000469 CrossRefGoogle Scholar
  73. Rasheed S, Jahan S, Sharmin T, Hoque S, Khanam MS, Land MA, Iqbal M, Hanifi SMA, Khatun F, Siddique AK, Bhuiya A (2014) How much salt do adults consume in climate vulnerable coastal Bangladesh? BMC Public Health 14:584. doi:10.1186/1471-2458-14-584 CrossRefGoogle Scholar
  74. Renaud FG, Syvitski JPM, Sebesvari Z, Werners SE, Kremer H, Kuenzer C, Ramesh R, Jeuken A, Friedrich J (2013) Tipping from the Holocene to the Anthropocene: how threatened are major world deltas? Curr Opin Environ Sustain 5:644–654. doi:10.1016/j.cosust.2013.11.007 CrossRefGoogle Scholar
  75. Renn O (2008) Risk Governance. Coping with Uncertainty in a Complex World. London. Earthscan. (ISBN-10: 1844072924)Google Scholar
  76. Royal HaskoningDHV, WUR, Deltares, and Rebel (2013) Mekong Delta Plan–Long-term vision and strategy for a safe, prosperous and sustainable delta. Prepared under the Strategic Partnership Arrangement on Climate Change Adaptation and Water Management between the Netherlands and Vietnam. Hanoi and AmersfoortGoogle Scholar
  77. Saroar MM, Routray JK (2011) Impacts of climatic disasters in coastal Bangladesh: why does private adaptive capacity differ? Reg Environ Change 12:169–190. doi:10.1007/s10113-011-0247-4 CrossRefGoogle Scholar
  78. Sarwar SGM, Woodroffe CD (2013) Rates of shoreline change along the coast of Bangladesh. J Coast Conservat 17:515–526. doi:10.1007/s11852-013-0251-6 CrossRefGoogle Scholar
  79. Sebesvari Z, Huong Thi Thu L, Pham Van T, Arnold U, Renaud FG (2012) Agriculture and water quality in the Vietnamese Mekong Delta” In: Renaud, FG and Kuenzer, C (eds) The Mekong Delta system. Interdisciplinary analyses of a river delta, Springer Netherlands, p 331–361. doi:10.1007/978-94-007-3962-8_13
  80. Shearman P, Bryan J, Walsh JP (2013) Trends in deltaic change over three decades in the Asia-Pacific region. J Coastal Res 290:1169–1183. doi:10.2112/JCOASTRES-D-12-00120.1 CrossRefGoogle Scholar
  81. Singh O (2002) Predictability of sea level in the Meghna estuary of Bangladesh. Glob Planet Change 32:245–251. doi:10.1016/S0921-8181(01)00152-7 CrossRefGoogle Scholar
  82. Swapan MSH, Gavin M (2011) A desert in the delta: participatory assessment of changing livelihoods induced by commercial shrimp farming in Southwest Bangladesh. Ocean Coast Manage 54:45–54. doi:10.1016/j.ocecoaman.2010.10.011 CrossRefGoogle Scholar
  83. Syvitski JPM (2008) Deltas at risk. Sustain Sci 3:23–32. doi:10.1007/s11625-008-0043-3 CrossRefGoogle Scholar
  84. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681–686. doi:10.1038/NGEO629 CrossRefGoogle Scholar
  85. Szabo S (2015) Urbanisation and food insecurity: the role of human development in a post-Malthusian framework. Oxf Dev Stud. doi:10.1080/13600818.2015.1067292 Google Scholar
  86. Szabo S, Renaud F, Hossain MS, Sebesvari Z, Matthews Z, Foufoula-Georgiou E, Nicholls RJ (2015a) New opportunities for tropical delta regions offered by the proposed sustainable development goals. Environ Sci Policy for Sust Dev 57:4. doi:10.1080/00139157.2015.1048142 Google Scholar
  87. Szabo S, Hajra R, Baschieri A, Matthews Z (2015b) “Inequalities in human well-being in the urban Ganges-Brahmaputra Delta: implications for sustainable development”. CPC Working Paper 67, University of Southampton. Available: http://www.cpc.ac.uk/publications/cpc_working_papers.php
  88. Tessler ZD, Vörösmarty CJ, Grossberg M, Gladkova I, Aizenman H, Syvitski JPM, Foufoula-Georgiou R (2015) profiling risk and sustainability in coastal deltas of the World. Science 349(6248):638–643. doi:10.1126/science.aab3574 CrossRefGoogle Scholar
  89. Tin HQ, Berg T, Bjørnstad Å (2001) Diversity and adaptation in rice varieties under static (ex situ) and dynamic (in situ) management. Euphytica 122:491–502. doi:10.1023/A:1017544406975 CrossRefGoogle Scholar
  90. Torresan S, Critto A, Valle MD, Harvey N, Marcomini A (2008) Assessing coastal vulnerability to climate change: comparing segmentation at global and regional scales. Sustain Sci 3:45–65. doi:10.1007/s11625-008-0045-1 CrossRefGoogle Scholar
  91. Torresan S, Critto A, Rizzi J, Marcomini A (2012) Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the North Adriatic Sea. Natural Hazards and Earth System Science 12:2347–2368. doi:10.5194/nhess-12-2347-2012 CrossRefGoogle Scholar
  92. Trinh LT, Vu GNH, Van Der Steen P, Lens PNL (2012) Climate change adaptation indicators to assess wastewater management and reuse options in the Mekong Delta, Vietnam. Water Resour Manage 27:1175–1191. doi:10.1007/s11269-012-0227-6 CrossRefGoogle Scholar
  93. Tu NPC, Ha NN, Agusa T, Ikemoto T, Tuyen BC, Tanabe S, Takeuchi I (2011) Trace elements in Anadara spp. (Mollusca: Bivalva) collected along the coast of Vietnam, with emphasis on regional differences and human health risk assessment. Fish Sci 77:1033–1043. doi:10.1007/s12562-011-0410-3 CrossRefGoogle Scholar
  94. Turner BL II, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML, Polsky C, Pulsipher A, Schiller A (2003) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci USA 100:8074–8079. doi:10.1073/pnas.1231335100 CrossRefGoogle Scholar
  95. Ullmann T, Schmitt A, Roth A, Duffe J, Dech S, Hubberten H-W, Baumhauer R (2014) Land Cover Characterization and Classification of Arctic Tundra Environments by Means of Polarized Synthetic Aperture X- and C-Band Radar (PolSAR) and Landsat 8 Multispectral Imagery–Richards Island, Canada. Remote Sens 6:8565–8593. doi:10.3390/rs6098565 CrossRefGoogle Scholar
  96. UN (United Nations) (2009) Global Assessment Report on Disaster Risk Reduction. Risk and poverty in a changing climate United Nations, GenevaGoogle Scholar
  97. UN (United Nations) (2011) Global Assessment Report on Disaster Risk Reduction. Revealing risk, redefining development United Nations, GenevaGoogle Scholar
  98. UN (United Nations) (2013) Global Assessment Report on Disaster Risk Reduction 2013. From Shared Risk to Shared Value: the Business Case for Disaster Risk Reduction. United Nations, GenevaGoogle Scholar
  99. UN (United Nations) (2015a) Sendai Framework for Disaster Risk Reduction 2015–2030 (GA A/RES/69/283)Google Scholar
  100. UN (United Nations) (2015b) Transforming our world: the 2030 Agenda for Sustainable Development. (GA A/RES/70/1)    Google Scholar
  101. UN (United Nations) (2015c), Adoption of the Paris Agreement (1/CP.21)Google Scholar
  102. UNDP, BCPR A Global Report (2004) Reducing Disaster Risk, A Challenge for Development, United Nations Development Programme. Bureau for Crisis Prevention and Recovery, New YorkGoogle Scholar
  103. Van CTB, Thuy NTT, San NH, Hien TT, Baranton G, Perolat P (1998) Human leptospirosis in the Mekong delta, Viet Nam. Trans Roy Soc Trop Med Hyg 92:625–628. doi:10.1016/S0035-9203(98)90787-8 CrossRefGoogle Scholar
  104. Vermaat JE, Eleveld MA (2012) Divergent options to cope with vulnerability in subsiding deltas. Clim Chang 117:31–39. doi:10.1007/s10584-012-0532-3 CrossRefGoogle Scholar
  105. Viana AP, Frédou FL, Frédou T (2012) Measuring the ecological integrity of an industrial district in the Amazon estuary, Brazil. Mar Pollut Bull 64:489–499. doi:10.1016/j.marpolbul.2012.01.006 CrossRefGoogle Scholar
  106. Wang Y, Jiao JJ, Cherry JA (2012) Occurrence and geochemical behavior of arsenic in a coastal aquifer–aquitard system of the Pearl River Delta, China. Sci Total Environ 427–428:286–297. doi:10.1016/j.scitotenv.2012.04.006 CrossRefGoogle Scholar
  107. Wassmann R, Hien NX, Hoanh CT, Tuong TP (2004) Sea level rise affecting the Vietnamese Mekong Delta: water elevation in the flood season and implications for rice production. Clim Chang 66:89–107CrossRefGoogle Scholar
  108. Wolters M, Kuenzer C (2015) Vulnerability assessments of coastal river deltas–categorization and review. J Coast Conservat 19:345–368. doi:10.1007/s11852-015-0396-6 CrossRefGoogle Scholar
  109. Wong PP, Losada IJ, Gattuso JP, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A (2014) Coastal systems and low-lying areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University, Cambridge and New York, p 361–409Google Scholar
  110. Zeidler RB (1997) Continental shorelines: climate change and integrated coastal management. Ocean Coast Manage 37:41–62. doi:10.1016/S0964-5691(97)87434-0 CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Zita Sebesvari
    • 1
  • Fabrice G. Renaud
    • 1
  • Susanne Haas
    • 1
  • Zachary Tessler
    • 2
  • Michael Hagenlocher
    • 1
  • Julia Kloos
    • 1
  • Sylvia Szabo
    • 3
  • Alejandro Tejedor
    • 4
  • Claudia Kuenzer
    • 5
  1. 1.United Nations UniversityInstitute for Environment and Human SecurityBonnGermany
  2. 2.CUNY Advanced Science Research CenterCity University of New YorkNew YorkUSA
  3. 3.Social Statistics and DemographyUniversity of SouthamptonSouthamptonUK
  4. 4.National Center for Earth-surface Dynamics and St. Anthony Falls LaboratoryUniversity of MinnesotaMinneapolisUSA
  5. 5.German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, of the German Aerospace Center, DLROberpfaffenhofenGermany

Personalised recommendations