Advertisement

Sustainability Science

, Volume 10, Issue 3, pp 397–411 | Cite as

More growth? An unfeasible option to overcome critical energy constraints and climate change

  • Iñigo Capellán-PérezEmail author
  • Margarita Mediavilla
  • Carlos de Castro
  • Óscar Carpintero
  • Luis Javier Miguel
Special Feature: Original Article Socially Sustainable Degrowth as a Social-Ecological Transformation
Part of the following topical collections:
  1. Special Feature: Socially Sustainable Degrowth as a Social-Ecological Transformation

Abstract

Growing scientific evidence shows that world energy resources are entering a period shaped by the depletion of high-quality fuels, whilst the decline of the easy-to-extract oil is a widely recognized ongoing phenomenon. The end of the era of cheap and abundant energy flows brings the issue of economic growth into question, stimulating research for alternatives as the de-growth proposal. The present paper applies the system dynamic global model WoLiM that allows economic, energy and climate dynamics to be analyzed in an integrated way. The results show that, if the growth paradigm is maintained, the decrease in fossil fuel extraction can only be partially compensated by renewable energies, alternative policies and efficiency improvements, very likely causing systemic energy shortage in the next decades. If a massive transition to coal would be promoted to try to compensate the decline of oil and gas and maintain economic growth, the climate would be then very deeply disturbed. The results suggest that growth and globalization scenarios are, not only undesirable from the environmental point of view, but also not feasible. Furthermore, regionalization scenarios without abandoning the current growth GDP focus would set the grounds for a pessimistic panorama from the point of view of peace, democracy and equity. In this sense, an organized material de-growth in the North followed by a steady state shows up as a valid framework to achieve global future human welfare and sustainability. The exercise qualitatively illustrates the magnitude of the challenge: the most industrialized countries should reduce, on average, their per capita primary energy use rate at least four times and decrease their per capita GDP to roughly present global average levels. Differently from the current dominant perceptions, these consumption reductions might actually be welfare enhancing. However, the attainment of these targets would require deep structural changes in the socioeconomic systems in combination with a radical shift in geopolitical relationships.

Keywords

Renewable limits Fossil fuel depletion Global warming System dynamics Peak oil Scenarios 

Notes

Acknowledgments

This work has been developed within the project CGL2009-14268 funded by the Spanish Ministry of Science and Innovation (MICINN). Additionally, Iñigo Capellán-Pérez wishes to thank the University of the Basque Country and the REPSOL Foundation for the support through the Low Carbon Programme (www.lowcarbonprogramme.org). Óscar Carpintero would also like to thank the financial support from the Spanish Ministry of Science and Innovation (Project ENE2010-19834, Project CSO2010-21979, and Project HAR2010-18544).

Supplementary material

11625_2015_299_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1031 kb)

References

  1. Abbasi T, Abbasi SA (2012) Is the use of renewable energy sources an answer to the problems of global warming and pollution? Crit Rev Environ Sci Technol 42:99–154. doi: 10.1080/10643389.2010.498754 CrossRefGoogle Scholar
  2. Aleklett K, Höök M, Jakobsson K et al (2010) The Peak of the oil age—Analyzing the world oil production reference scenario in world energy outlook 2008. Energy Policy 38:1398–1414. doi: 10.1016/j.enpol.2009.11.021 CrossRefGoogle Scholar
  3. Alexander S (2012) The optimal material threshold: Toward an economics of sufficiencyGoogle Scholar
  4. Alier JM (2009) Socially Sustainable Economic De-growth. Dev Change 40:1099–1119. doi: 10.1111/j.1467-7660.2009.01618.x CrossRefGoogle Scholar
  5. Anderson K, Bows A (2011) Beyond “dangerous” climate change: emission scenarios for a new world. Philos Trans R Soc Math Phys Eng Sci 369:20–44. doi: 10.1098/rsta.2010.0290 CrossRefGoogle Scholar
  6. Anderson K, Bows A (2012) A new paradigm for climate change. Nat Clim Change 2:639–640. doi: 10.1038/nclimate1646 CrossRefGoogle Scholar
  7. Arrow K, Bolin B, Costanza R et al (1995) Economic growth, carrying capacity, and the environment. Ecol Econ 15:91–95CrossRefGoogle Scholar
  8. Arto I, Capellán-Pérez I, Lago R, Bueno G, Bermejo R (2015) The energy footprint of human development, Working Paper. BilbaoGoogle Scholar
  9. ASPO (2009) ASPO Newsletter n. 100Google Scholar
  10. Ayres RU (2006) Turning point: the end of exponential growth? Technol Forecast Soc Change 73:1188–1203. doi: 10.1016/j.techfore.2006.07.002 CrossRefGoogle Scholar
  11. Ayres RU (2008) Sustainability economics: where do we stand? Ecol Econ 67:281–310. doi: 10.1016/j.ecolecon.2007.12.009 CrossRefGoogle Scholar
  12. Ayres RU, van den Bergh JCJM, Lindenberger D, Warr B (2013) The underestimated contribution of energy to economic growth. Struct Change Econ Dyn 27:79–88. doi: 10.1016/j.strueco.2013.07.004 CrossRefGoogle Scholar
  13. Bardi U (2014) Extracted: How the Quest for Mineral Wealth Is Plundering the Planet. Chelsea Green Publishing, White River Junction, VermontGoogle Scholar
  14. Benes J, Chauvet M, Kamenik O, et al (2012) The Future of Oil: Geology versus Technology. IMF Working PaperGoogle Scholar
  15. Bilancini E, D’Alessandro S (2012) Long-run welfare under externalities in consumption, leisure, and production: a case for happy degrowth vs. unhappy growth. Ecol Econ 84:194–205. doi: 10.1016/j.ecolecon.2011.10.023 CrossRefGoogle Scholar
  16. Bithas K, Kalimeris P (2013) Re-estimating the decoupling effect: is there an actual transition towards a less energy-intensive economy? Energy 51:78–84. doi: 10.1016/j.energy.2012.11.033 CrossRefGoogle Scholar
  17. BP (2014) BP Statistical Review of World 2014. British PetroleumGoogle Scholar
  18. Brouseau E, Dedeurwaerdere T, Jouvet P-A, Willinger M (eds) (2012) Global environmental commons: analytical and political challenges in building governance mechanisms. Oxford University Press, OxfordGoogle Scholar
  19. Campbell CJ, Laherrère J (1998) The end of cheap oilGoogle Scholar
  20. Capellán-Pérez I, Mediavilla M, de Castro C et al (2014a) Fossil fuel depletion and socio-economic scenarios: an integrated approach. Energy 77:641–666. doi: 10.1016/j.energy.2014.09.063 CrossRefGoogle Scholar
  21. Capellán-Pérez I, Mediavilla M, de Castro C, Miguel LJ (2014b) World Limits Model (WoLiM) 1.0—Model Documentation. Technical Report. Energy, Economy and System Dynamics Group of the University of Valladolid, SpainGoogle Scholar
  22. Cleveland CJ, Kaufmann RK, Stern DI (2000) Aggregation and the role of energy in the economy. Ecol Econ 32:301–317. doi: 10.1016/S0921-8009(99)00113-5 CrossRefGoogle Scholar
  23. D’Alessandro S, Luzzati T, Morroni M (2010) Energy transition towards economic and environmental sustainability: feasible paths and policy implications. J Clean Prod 18:532–539. doi: 10.1016/j.jclepro.2010.02.022 CrossRefGoogle Scholar
  24. Dale M (2012) Meta-analysis of non-renewable energy resource estimates. Energy Policy 43:102–122. doi: 10.1016/j.enpol.2011.12.039 CrossRefGoogle Scholar
  25. Dale M, Krumdieck S, Bodger P (2012) Global energy modelling—A biophysical approach (GEMBA) Part 2: methodology. Ecol Econ 73:158–167. doi: 10.1016/j.ecolecon.2011.10.028 CrossRefGoogle Scholar
  26. Daly HE (1991) Steady-State Economics, 2nd edn. Island Press, With New EssaysGoogle Scholar
  27. Daly HE (1996) Beyond growth: the economics of sustainable development. Beacon Press, BostonGoogle Scholar
  28. Danielsen F, Beukema H, Burgess ND et al (2009) Biofuel Plantations on Forested Lands: double Jeopardy for Biodiversity and Climate. Conserv Biol 23:348–358. doi: 10.1111/j.1523-1739.2008.01096.x CrossRefGoogle Scholar
  29. De Castro C (2009) Escenarios de Energía-Economía mundiales con modelos de dinámica de sistemas. University of ValladolidGoogle Scholar
  30. De Castro C, Miguel LJ, Mediavilla M (2009) The role of non conventional oil in the attenuation of peak oil. Energy Policy 37:1825–1833. doi: 10.1016/j.enpol.2009.01.022 CrossRefGoogle Scholar
  31. De Castro C, Mediavilla M, Miguel LJ, Frechoso F (2011) Global wind power potential: physical and technological limits. Energy Policy 39:6677–6682. doi: 10.1016/j.enpol.2011.06.027 CrossRefGoogle Scholar
  32. De Castro C, Mediavilla M, Miguel LJ, Frechoso F (2013) Global solar electric potential: a review of their technical and sustainable limits. Renew Sustain Energy Rev 28:824–835. doi: 10.1016/j.rser.2013.08.040 CrossRefGoogle Scholar
  33. De Castro C, Carpintero Ó, Frechoso F et al (2014) A top-down approach to assess physical and ecological limits of biofuels. Energy 64:506–512. doi: 10.1016/j.energy.2013.10.049 CrossRefGoogle Scholar
  34. Douthwaite R (2012) Degrowth and the supply of money in an energy-scarce world. Ecol Econ 84:187–193. doi: 10.1016/j.ecolecon.2011.03.020 CrossRefGoogle Scholar
  35. EWG (2013) Fossil and nuclear fuels—the supply outlook. Energy Watch GroupGoogle Scholar
  36. Exner A, Fleissner P, Kranzl L, Zittel W (2013) Land and resource scarcity: capitalism, struggle and well-being in a world without fossil fuels. Routledge, LondonGoogle Scholar
  37. Fouquet R (2010) The slow search for solutions: lessons from historical energy transitions by sector and service. Energy Policy 38:6586–6596. doi: 10.1016/j.enpol.2010.06.029 CrossRefGoogle Scholar
  38. Frey BS, Stutzer A (2002) Happiness and economics: how the economy and institutions affect well-being. Princeton University Press, PrincetonGoogle Scholar
  39. Friedrichs J (2010) Global energy crunch: how different parts of the world would react to a peak oil scenario. Energy Policy 38:4562–4569. doi: 10.1016/j.enpol.2010.04.011 CrossRefGoogle Scholar
  40. García-Olivares A, Ballabrera-Poy J (2015) Energy and mineral peaks, and a future steady state economy. Technol Forecast Soc Change 90, Part b:587–598. doi: 10.1016/j.techfore.2014.02.013
  41. García-Olivares A, Solé J (2015) End of growth and the structural instability of capitalism—From capitalism to a Symbiotic Economy. Futures. doi: 10.1016/j.futures.2014.09.004 Google Scholar
  42. García-Olivares A, Ballabrera-Poy J, García-Ladona E, Turiel A (2012) A global renewable mix with proven technologies and common materials. Energy Policy 41:561–574. doi: 10.1016/j.enpol.2011.11.018 CrossRefGoogle Scholar
  43. Georgescu-Roegen N (1971) The entropy law and the economic process. Harvard University PressGoogle Scholar
  44. Greene DL (1999) An assessment of energy and environmental issues related to increased use of Gas-to-Liquids fuels in TransportationGoogle Scholar
  45. Greer JM (2005) How civilizations fall: A theory of catabolic collapse. WTVGoogle Scholar
  46. Hamilton JD (2009) Causes and Consequences of the Oil Shock of 2007–08. National Bureau of Economic Research, Cambridge, USACrossRefGoogle Scholar
  47. Heinberg R, Fridley D (2010) The end of cheap coal. Nature 468:367–369. doi: 10.1038/468367a CrossRefGoogle Scholar
  48. Hirsch RL (2008) Mitigation of maximum world oil production: shortage scenarios. Energy Policy 36:881–889. doi: 10.1016/j.enpol.2007.11.009 CrossRefGoogle Scholar
  49. Hirsch RL, Bezdek RH, Wendling RM (2005) Peaking of world oil production: impacts, mitigation and risk managementGoogle Scholar
  50. Höök M, Aleklett K (2010) A review on coal-to-liquid fuels and its coal consumption. Int J Energy Res 34:848–864. doi: 10.1002/er.1596 CrossRefGoogle Scholar
  51. Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 52:797–809. doi: 10.1016/j.enpol.2012.10.046 CrossRefGoogle Scholar
  52. Höök M, Hirsch R, Aleklett K (2009) Giant oil field decline rates and their influence on world oil production. Energy Policy 37:2262–2272. doi: 10.1016/j.enpol.2009.02.020 CrossRefGoogle Scholar
  53. Höök M, Zittel W, Schindler J, Aleklett K (2010) Global coal production outlooks based on a logistic model. Fuel 89:3546–3558. doi: 10.1016/j.fuel.2010.06.013 CrossRefGoogle Scholar
  54. Höök M, Fantazzini D, Angelantoni A, Snowden S (2014) Hydrocarbon liquefaction: viability as a peak oil mitigation strategy. Philos Trans R Soc Math Phys Eng Sci 372:20120319. doi: 10.1098/rsta.2012.0319 CrossRefGoogle Scholar
  55. Hubbert MK (1956) Nuclear Energy and the Fossil Fuel. Drilling and Production Practice. American Petroleum Institute, San Antonio, TexasGoogle Scholar
  56. IEA ETP (2010) Energy technology perspectives 2010: scenarios & strategies to 2050. OECD/IEA, ParisGoogle Scholar
  57. IPCC SRES (2000) Special Report on Emissions Scenarios. In: Nakicenovic N, Swart R (eds). Cambridge University Press, Cambridge, UK. ISBN 0521804930Google Scholar
  58. IPCC (2007) Mitigation of Climate Change—Contribution of Working Group III. In: Metz B and Davidson OR (eds). Cambridge University PressGoogle Scholar
  59. IPCC (2011) Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University PressGoogle Scholar
  60. IPCC (2014a) Climate Change 2014: Mitigation of Climate Change. Cambridge University PressGoogle Scholar
  61. IPCC (2014b) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014. Cambridge University PressGoogle Scholar
  62. Jackson T (2009) Prosperity without Growth: Economics for a Finite Planet, Reprint. Routledge, New YorkGoogle Scholar
  63. Jackson T, Victor P (2011) Productivity and work in the “green economy”: some theoretical reflections and empirical tests. Environ Innov Soc Transit 1:101–108. doi: 10.1016/j.eist.2011.04.005 CrossRefGoogle Scholar
  64. Kallis G (2011) In defence of degrowth. Ecol Econ 70:873–880. doi: 10.1016/j.ecolecon.2010.12.007 CrossRefGoogle Scholar
  65. Kallis G, Kerschner C, Martínez-Alier J (2012) The economics of degrowth. Ecol Econ 84:172–180. doi: 10.1016/j.ecolecon.2012.08.017 CrossRefGoogle Scholar
  66. Keith DW, DeCarolis JF, Denkenberger DC et al (2004) The influence of large-scale wind power on global climate. Proc Natl Acad Sci USA 101:16115–16120. doi: 10.1073/pnas.0406930101 CrossRefGoogle Scholar
  67. Kerschner C (2010) Economic de-growth vs. steady-state economy. J Clean Prod 18:544–551. doi: 10.1016/j.jclepro.2009.10.019 CrossRefGoogle Scholar
  68. Kerschner C (2014) Peak oil. Degrowth: A Vocabulary for a New Era. RoutledgeGoogle Scholar
  69. Kerschner C, O’Neill DW (2016) Economic Growth and Sustainability. In: Kopnina H, Shoreman-Ouimet E (eds) Sustainability. Key Issues. Routledge, p 392Google Scholar
  70. Kerschner C, Prell C, Feng K, Hubacek K (2013) Economic vulnerability to Peak Oil. Glob Environ Change. doi: 10.1016/j.gloenvcha.2013.08.015 Google Scholar
  71. Kharecha PA, Hansen JE (2008) Implications of “peak oil” for atmospheric CO2 and climate. Glob Biogeochem Cycles 22:n/a–n/a. doi:  10.1029/2007GB003142
  72. Kubiszewski I, Costanza R, Franco C et al (2013) Beyond GDP: measuring and achieving global genuine progress. Ecol Econ 93:57–68. doi: 10.1016/j.ecolecon.2013.04.019 CrossRefGoogle Scholar
  73. Laherrère J (2010) Peak Oil y Seguridad Energética. Buenos Aires (Argentina)Google Scholar
  74. Latouche S (2006) Le pari de la décroissance. Fayard, ParisGoogle Scholar
  75. Leder F, Shapiro JN (2008) This time it’s different: an inevitable decline in world petroleum production will keep oil product prices high, causing military conflicts and shifting wealth and power from democracies to authoritarian regimes. Energy Policy 36:2850–2852. doi: 10.1016/j.enpol.2008.04.015 CrossRefGoogle Scholar
  76. Lenzen M (2010) Current state of development of electricity-generating technologies: a Literature review. Energies 3:462–591. doi: 10.3390/en3030462 CrossRefGoogle Scholar
  77. Maggio G, Cacciola G (2012) When will oil, natural gas, and coal peak? Fuel 98:111–123. doi: 10.1016/j.fuel.2012.03.021 CrossRefGoogle Scholar
  78. Martínez DM, Ebenhack BW (2008) Understanding the role of energy consumption in human development through the use of saturation phenomena. Energy Policy 36:1430–1435. doi: 10.1016/j.enpol.2007.12.016 CrossRefGoogle Scholar
  79. Martínez-Alier J, Pascual U, Vivien F-D, Zaccai E (2010) Sustainable de-growth: mapping the context, criticisms and future prospects of an emergent paradigm. Ecol Econ 69:1741–1747. doi: 10.1016/j.ecolecon.2010.04.017 CrossRefGoogle Scholar
  80. Meadows DL (2012) Perspectives on the Limits of Growth: It is too late for sustainable development. Perspectives on Limits to Growth: Challenges to Building a Sustainable Planet. Smithsonian Institution and the Club of Rome, Washington DCGoogle Scholar
  81. Meadows DH, Meadows DL, Randers J, Behrens WW III (1972) The Limits to Growth. Universe Books, New YorkGoogle Scholar
  82. Meadows DH, Randers J, Meadows DL (2004) The limits to growth: the 30-year update. Chelsea Green Publishing Company, White River JunctionGoogle Scholar
  83. Mediavilla M, de Castro C, Capellán I et al (2013) The transition towards renewable energies: physical limits and temporal conditions. Energy Policy 52:297–311. doi: 10.1016/j.enpol.2012.09.033 CrossRefGoogle Scholar
  84. Miller L, Gans F, Kleidon A (2011) Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst Dynam 2:1–12CrossRefGoogle Scholar
  85. Mohr SH, Wang J, Ellem G et al (2015) Projection of world fossil fuels by country. Fuel 141:120–135. doi: 10.1016/j.fuel.2014.10.030 CrossRefGoogle Scholar
  86. Motesharrei S, Rivas J, Kalnay E (2014) Human and nature dynamics (HANDY): modeling inequality and use of resources in the collapse or sustainability of societies. Ecol Econ 101:90–102. doi: 10.1016/j.ecolecon.2014.02.014 CrossRefGoogle Scholar
  87. Murphy DJ (2012) Fossil fuels: peak oil is affecting the economy already. Nature 483:541. doi: 10.1038/483541a CrossRefGoogle Scholar
  88. Murphy DJ, Hall CAS (2011) Adjusting the economy to the new energy realities of the second half of the age of oil. Ecol Model 223:67–71. doi: 10.1016/j.ecolmodel.2011.06.022 CrossRefGoogle Scholar
  89. Murray J, King D (2012) Climate policy: oil’s tipping point has passed. Nature 481:433–435. doi: 10.1038/481433a CrossRefGoogle Scholar
  90. Nel WP, Cooper CJ (2009) Implications of fossil fuel constraints on economic growth and global warming. Energy Policy 37:166–180. doi: 10.1016/j.enpol.2008.08.013 CrossRefGoogle Scholar
  91. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University PressGoogle Scholar
  92. Patzek TW, Croft GD (2010) A global coal production forecast with multi-Hubbert cycle analysis. Energy 35:3109–3122. doi: 10.1016/j.energy.2010.02.009 CrossRefGoogle Scholar
  93. Prieto PA, Hall CAS (2013) Spain’s Photovoltaic Revolution: The Energy Return on Investment, 2013th edn. SpringerGoogle Scholar
  94. Rao ND, Riahi K, Grubler A (2014) Climate impacts of poverty eradication. Nat Clim Change 4:749–751. doi: 10.1038/nclimate2340 CrossRefGoogle Scholar
  95. Raskin PD, Electris C, Rosen RA (2010) The Century Ahead: searching for Sustainability. Sustainability 2:2626–2651. doi: 10.3390/su2082626 CrossRefGoogle Scholar
  96. Reynolds DB (1999) The mineral economy: how prices and costs can falsely signal decreasing scarcity. Ecol Econ 31:155–166. doi: 10.1016/S0921-8009(99)00098-1 CrossRefGoogle Scholar
  97. Rutledge D (2011) Estimating long-term world coal production with logit and probit transforms. Int J Coal Geol 85:23–33. doi: 10.1016/j.coal.2010.10.012 CrossRefGoogle Scholar
  98. Schenk NJ, Moll HC (2007) The use of physical indicators for industrial energy demand scenarios. Ecol Econ 63:521–535. doi: 10.1016/j.ecolecon.2006.12.008 CrossRefGoogle Scholar
  99. Schneider F, Kallis G, Martínez-Alier J (2010) Crisis or opportunity? Economic degrowth for social equity and ecological sustainability. Introduction to this special issue. J Clean Prod 18:511–518. doi: 10.1016/j.jclepro.2010.01.014 CrossRefGoogle Scholar
  100. Smil V (2008) Energy in nature and society: general energetics of complex systems. MIT PressGoogle Scholar
  101. Sorrell S, Miller R, Bentley R, Speirs J (2010) Oil futures: a comparison of global supply forecasts. Energy Policy 38:4990–5003. doi: 10.1016/j.enpol.2010.04.020 CrossRefGoogle Scholar
  102. Steffen W, Richardson K, Rockström J, et al (2015) Planetary boundaries: Guiding human development on a changing planet. Science 1259855. doi: 10.1126/science.1259855
  103. Stern DI (2004) The rise and fall of the environmental Kuznets curve. World Dev 32:1419–1439. doi: 10.1016/j.worlddev.2004.03.004 CrossRefGoogle Scholar
  104. Stocker A, Großmann A, Hinterberger F, Wolter MI (2014) A low growth path in Austria: potential causes, consequences and policy options. Empirica 41:445–465. doi: 10.1007/s10663-014-9267-x CrossRefGoogle Scholar
  105. Stranges AN (2007) A history of the fischer-tropsch synthesis in Germany 1926–45. In: Davis BH and Occelli ML (ed) Studies in Surface Science and Catalysis. Elsevier, pp 1–27Google Scholar
  106. Tainter JA (1990) The Collapse of Complex Societies, Reprint edn. Cambridge University Press, CambridgeGoogle Scholar
  107. Thielemann T (2012) Why there will be no peak coal in the foreseeable future. Open J Geol 02:57–64. doi: 10.4236/ojg.2012.22006 CrossRefGoogle Scholar
  108. Trainer F (2007) Renewable energy cannot sustain a consumer society. Springer Science & Business MediaGoogle Scholar
  109. Tverberg GE (2012) Oil supply limits and the continuing financial crisis. Energy 37:27–34. doi: 10.1016/j.energy.2011.05.049 CrossRefGoogle Scholar
  110. UNEP (2011) Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment ProgrammeGoogle Scholar
  111. Valero A, Valero A (2014) Thanatia: The Destiny of the Earth’s Mineral Resources : A Thermodynamic Cradle-to-Cradle Assessment, 1st edn. World Scientific Publishing Company, New JerseyGoogle Scholar
  112. Van den Bergh JCJM (2009) The GDP paradox. J Econ Psychol 30:117–135. doi: 10.1016/j.joep.2008.12.001 CrossRefGoogle Scholar
  113. Van den Bergh JCJM (2011) Environment versus growth—A criticism of “degrowth” and a plea for “a-growth”. Ecol Econ 70:881–890. doi: 10.1016/j.ecolecon.2010.09.035 CrossRefGoogle Scholar
  114. Van Vuuren DP, Kok MTJ, Girod B et al (2012) Scenarios in global environmental assessments: key characteristics and lessons for future use. Glob Environ Change 22:884–895. doi: 10.1016/j.gloenvcha.2012.06.001 CrossRefGoogle Scholar
  115. Victor PA (2008) Managing without growth slower by design, not disaster. Edward Elgar, Cheltenham, UK; Northampton, MAGoogle Scholar
  116. Victor PA (2012) Growth, degrowth and climate change: a scenario analysis. Ecol Econ 84:206–212. doi: 10.1016/j.ecolecon.2011.04.013 CrossRefGoogle Scholar
  117. Ward JD, Mohr SH, Myers BR, Nel WP (2012) High estimates of supply constrained emissions scenarios for long-term climate risk assessment. Energy Policy 51:598–604. doi: 10.1016/j.enpol.2012.09.003 CrossRefGoogle Scholar
  118. WBGU (2003) World in Transition. Towards Sustainable Energy SystemsGoogle Scholar
  119. WCED (1987) Our common future. United NationsGoogle Scholar
  120. WEO (2010) World Energy Outlook 2010. OECD/IEAGoogle Scholar
  121. WEO (2012) World Energy Outlook 2012. OECD/IEAGoogle Scholar
  122. Yücel G, Barlas Y (2010) Dynamics of the North-South welfare gap and global sustainability. Technol Forecast Soc Change 77:594–614. doi: 10.1016/j.techfore.2009.11.004 CrossRefGoogle Scholar
  123. Zenzey E (2013) Energy as a Master Resource. State of the World 2013: Is sustainability still possible?. Worldwatch Institute Island Press, Washington, pp 73–83CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Iñigo Capellán-Pérez
    • 1
    • 1
    Email author
  • Margarita Mediavilla
    • 2
  • Carlos de Castro
    • 3
  • Óscar Carpintero
    • 4
  • Luis Javier Miguel
    • 2
  1. 1.Low Carbon Programme, Instituto de Economía PúblicaUniversity of the Basque CountryBilbaoSpain
  2. 2.Systems Engineering and Automatic Control, Escuela de Ingenierías IndustrialesUniversity of ValladolidValladolidSpain
  3. 3.Applied Physics department, Escuela de ArquitecturaUniversity of ValladolidValladolidSpain
  4. 4.Department of Applied EconomicsUniversity of ValladolidValladolidSpain

Personalised recommendations