Sustainability Science

, Volume 7, Issue 2, pp 169–184 | Cite as

Sectoral marginal abatement cost curves: implications for mitigation pledges and air pollution co-benefits for Annex I countries

  • Fabian Wagner
  • Markus Amann
  • Jens Borken-Kleefeld
  • Janusz Cofala
  • Lena Höglund-Isaksson
  • Pallav Purohit
  • Peter Rafaj
  • Wolfgang Schöpp
  • Wilfried Winiwarter
Special Feature: Original Article Socio-technological transitions

Abstract

Using the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies) model, we derived Annex I marginal abatement cost curves for the years 2020 and 2030 for three World Energy Outlook baseline scenarios (2007–2009) of the International Energy Agency. These cost curves are presented by country, by greenhouse gas and by sector. They are available for further inter-country comparisons in the GAINS Mitigation Efforts Calculator—a free online tool. We illustrate the influence of the baseline scenario on the shape of mitigation cost curves, and identify key low cost options as well as no-regret priority investment areas for the years 2010–2030. Finally, we show the co-effect of GHG mitigation on the emissions of local air pollutants and argue that these co-benefits offer strong local incentives for mitigation.

Keywords

Greenhouse gas mitigation Marginal abatement costs UNFCCC Annex I pledges Co-benefits GAINS model 

References

  1. AGO (1999a) Australian commercial building sector. Greenhouse gas emissions 1990–2010. Executive Summary Report 1999. Australian Greenhouse Office, CanberraGoogle Scholar
  2. AGO (1999b) Australian residential building sector. Greenhouse gas emissions 1990–2010. Executive Summary Report 1999. Australian Greenhouse Office, CanberraGoogle Scholar
  3. Amann M, Bertok I, Borken J, Cofala J, Heyes C, Höglund L, Klimont Z, Purohit P, Rafaj P, Schoepp W, Toth G, Wagner F, Winiwarter W (2008a) GAINS—potentials and costs for greenhouse gas mitigation in Annex I countries. International Institute for Applied Systems Analysis (IIASA), LaxenburgGoogle Scholar
  4. Amann M, Kejun J, Hao J et al (2008b) GAINS-Asia: scenarios for cost-effective control of air pollution and greenhouse gases in China. International Institute for Applied Systems Analysis (IIASA), LaxenburgGoogle Scholar
  5. Amann M, Rafaj P, Höhne N (2009) GHG mitigation potentials in Annex I countries comparison of model estimates for 2020. International Institute for Applied Systems Analysis, LaxenburgGoogle Scholar
  6. Amann M, Bertok I, Borken-Kleefeld J, Cofala J, Heyes C, Höglund-Isaksson L, Klimont Z, Rafaj P, Schöpp W, Wagner F (2011) Cost-effective emission reductions to improve air quality in Europe in 2020. Scenarios for the negotiations on the revision of the Gothenburg protocol under the convention on long-range transboundary air pollution. Background paper for the 48th Session of the Working Group on Strategies and Review. CIAM Report 1/2011. International Institute for Applied Systems Analysis, LaxenburgGoogle Scholar
  7. Australian Treasury (2008) Australia’s low pollution future—the economics of climate change mitigation. Commonwealth of AustraliaGoogle Scholar
  8. Barker T, Bashmakov I, Alharti A, et al (2007) Mitigation from a cross-sectoral perspective. Climate change 2007. Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  9. Borken-Kleefeld J, Cofala J, Rafaj P (2009) GAINS GHG mitigation potentials and costs in the transport sector—methodology (version 2). International Institute for Applied Systems Analysis, LaxenburgGoogle Scholar
  10. Bowman AF, Kram T, Klein Goldewijk K (2006) Integrated modelling of global environmental change—an overview of IMAGE 2.4. Netherlands Environmental Assessment Agency (MNP), BilthovenGoogle Scholar
  11. Bruinsma J (2003) World agriculture towards 2015/2030. An FAO perspective. World Food and Agricultural Organization/Earthscan, Rome/LondonGoogle Scholar
  12. Capros P, Mantzos L, Papandreou V, Tasios N (2008) European energy and transport trends to 2030—update 2007. European Commission Directorate-General for Energy and Transport, BrusselsGoogle Scholar
  13. Cofala J, Purohit P, Rafaj P, Klimont Z (2009) GAINS GHG mitigation potentials and costs from energy use and industrial sources in Annex I countries—methodology. International Institute for Applied Systems Analysis, LaxenburgGoogle Scholar
  14. den Elzen M, Hare W, Höhne N, Levin K, Lowe J, Riahi K, Rogelj J, Sawin E, Taylor C, van Vuuren D, Ward M (2010) The emissions gap report: are the Copenhagen Accord pledges sufficient to limit global warming to 2 deg. C or 1.5 deg. C? A preliminary assessment. United Nations Environment ProgrammeGoogle Scholar
  15. Gupta S, Tirpak DA, Burger N, Kruger JA, Michaelowa A, Murase S, Pershing J, Saijo T, Sari A (2007) Policies, instruments and co-operative arrangements. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UKGoogle Scholar
  16. Höglund-Isaksson L, Mechler R (2005) The GAINS model for greenhouse gases, version 1.0: methane (CH4). International Institute for Applied Systems Analysis (IIASA), LaxenburgGoogle Scholar
  17. Höglund-Isaksson L, Winiwarter W, Tohka A (2009) GAINS potentials and costs for mitigation of non-CO2 greenhouse gases in Annex I countries—methodology (version 2). International Institute for Applied Systems Analysis, LaxenburgGoogle Scholar
  18. IEA (2005) Projected costs of generating electricity—2005 update. International Energy Agency, ParisGoogle Scholar
  19. IEA (2007) World Energy Outlook 2007. International Energy Agency, ParisGoogle Scholar
  20. IEA (2008a) World Energy Outlook 2008. International Energy Agency, ParisGoogle Scholar
  21. IEA (2008b) Deploying renewables—principles for effective policies. OECD Publishing, International Energy Agency, ParisGoogle Scholar
  22. IEA (2008c) Energy technology perspectives 2008. International Energy Agency, ParisGoogle Scholar
  23. IEA (2009) World Energy Outlook 2009. International Energy Agency, ParisGoogle Scholar
  24. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change, IGES, JapanGoogle Scholar
  25. Kainuma M, Matsuoka Y, Masui T, Takahashi K, Fujino J, Hijioka Y (2007) Climate policy assessment using the Asia-Pacific integrated model. In: Schlesinger M, Kheshgi H, Smith J, Chesnaye F, Reilly J, Wilson R and Kolstad C (eds) Human-induced climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  26. Klaassen G, Berglund C, Wagner F (2005) The GAINS model for greenhouse gases—version 1.0: carbon dioxide (CO2). International Institute for Applied Systems Analysis (IIASA), LaxenburgGoogle Scholar
  27. Kobos PH, Erickson JD, Drennen TE (2006) Technological learning and renewable energy costs: implications for US renewable energy policy. Energy Policy 34:1645–1658CrossRefGoogle Scholar
  28. LBNL (2007) The home energy saver—documentation of calculation methodology, input data, and infrastructure. In: Energy Analysis Department, Environmental Energy Technologies Division, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley. http://hes.lbl.gov/consumer/
  29. McKinsey (2008) The carbon productivity challenge: curbing global energy demand growth. McKinsey & Company. http://www.mckinsey.com/mgi/reports/pdfs/Carbon_Productivity/MGI_carbon_productivity_full_report.pdf
  30. McKinsey (2009) Pathways to a low-carbon economy—version 2 of the global greenhouse gas abatement cost curve. http://www.mckinsey.com/en/Client_Service/Sustainability/Latest_thinking/Pathways_to_a_low_carbon_economy.aspx
  31. Meinefeld M (2004) Strategische Erfolgsfaktoren für Contracting-Angebote von Energieversorgungsunternehmen. PhD Thesis, University of Paderborn, Department for EconomicsGoogle Scholar
  32. Messner S (1997) Endogenized technological learning in an energy systems model. J Evol Econ 7:291–313CrossRefGoogle Scholar
  33. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, CambridgeGoogle Scholar
  34. Purohit P, Amann M, Mathur R, Bertok I, Borken J, Cofala J, Heyes C, Klimont Z, Rafaj P, Schöpp W, Wagner F, Winiwarter W (2010) GAINS-Asia. Scenarios for cost-effective control of air pollution and greenhouse gases in India. International Institute for Applied Systems Analysis (IIASA), LaxenburgGoogle Scholar
  35. RITE (2009) RITE GHG mitigation assessment model. Research Institute of Innovative Technology for the Earth (RITE), JapanGoogle Scholar
  36. Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35:4444–4454CrossRefGoogle Scholar
  37. Russ P, Ciscar J-C, Saveyn B, Soria A, Szabo L, Van Ierland T, Van Regemorter D, Virdis R (2009) Economic assessment of post-2012 global climate policies. Joint Research Centre of the European Community, SevilleGoogle Scholar
  38. Stern N (2009) A blueprint for a safer planet. Bodley Head, LondonGoogle Scholar
  39. Tohka A (2005) The GAINS model for greenhouse gases—version 1.0: HFC, PFC and SF6. International Institute for Applied Systems Analysis, LaxenburgGoogle Scholar
  40. US-EPA (2005) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2020. U.S. Environmental Protection Agency, Office of Atmospheric Programs, Climate Change Division, Washington DCGoogle Scholar
  41. van Vuuren DP, Hoogwijk M, Barker T, Riahi K, Boeters S, Chateau J, Scrieciu S, van Vliet J, Masui T, Blok K, Blomen E, Kram T (2009) Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials. Energy Policy 37:5125–5139CrossRefGoogle Scholar
  42. Vine E (2005) An international survey of the energy service company (ESCO) industry. Energy Policy 33:691–704CrossRefGoogle Scholar
  43. Wagner F, Amann M (2009a) Analysis of the proposals for GHG reductions in 2020 made by UNFCCC Annex I countries by mid-August 2009. International Institute for Applied Systems Analysis, LaxenburgGoogle Scholar
  44. Wagner F, Amann M (2009b) Analysis of the proposals for GHG reductions in 2020 made by UNFCCC Annex I parties: implications of the economic crisis. International Institute for Applied Systems Analysis, LaxenburgGoogle Scholar
  45. Winiwarter W (2005) The GAINS model for greenhouse gases—version 1.0: nitrous oxide (N2O). International Institute for Applied Systems Analysis (IIASA), LaxenburgGoogle Scholar
  46. Worrell E, Price L, Neelis M, Galitsky C, Zhou N (2007) World best practice energy intensity values for selected industrial sectors. Lawrence Berkeley National Laboratory, BerkeleyCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • Fabian Wagner
    • 1
  • Markus Amann
    • 1
  • Jens Borken-Kleefeld
    • 1
  • Janusz Cofala
    • 1
  • Lena Höglund-Isaksson
    • 1
  • Pallav Purohit
    • 1
  • Peter Rafaj
    • 1
  • Wolfgang Schöpp
    • 1
  • Wilfried Winiwarter
    • 1
  1. 1.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria

Personalised recommendations