Advertisement

Sustainability Science

, Volume 3, Issue 1, pp 33–43 | Cite as

Storm surges: perspectives and options

  • Hans von StorchEmail author
  • Katja Woth
Special Feature: Review Article

Abstract

This review paper attempts to summarize the scattered and fragmented knowledge about past and possible future changing storm-surge statistics using the particularly well-studied case of the North Sea as an example. For this region, a complete and robust analysis methodology has been developed in recent years. This methodology is based on dynamical and statistical models. Using the concept of dynamical downscaling, development during recent decades, when sufficiently good and homogeneous weather data exist, has been “reconstructed,” and scenarios of possible future change are described. “Localization” allows estimation of changes at specific sites, e.g., harbors. As local water-level statistics depend not only on climate variations but also on local modifications of the local bathymetry, new options for adaptation emerge. For the case of Hamburg, an option for such future adaptations is discussed.

Keywords

Storm surge North Sea Storms Localization Scenario Climate change 

References

  1. Alexandersson H, Schmith T, Iden K, Tuomenvirta H (2000) Trends of storms in NW Europe derived from an updated pressure data set. Clim Res 14:71–73CrossRefGoogle Scholar
  2. Aspelien T, Weisse R (2005) Assimilation of sea level observations for multidecadal regional ocean model simulations for the North Sea. GKSS Report 2005/2Google Scholar
  3. Beersma J, Rider K, Komen G, Kaas E, Kharin V (1997) An analysis of extratropical storms in the North Atlantic region as simulated in a control and a 2 x CO2 time-slice experiment with a high resolution atmospheric model. Tellus 49A:347–361Google Scholar
  4. Bengtsson L (2007) Tropical cyclones in a warmer climate. WMO Bull 56(3):1–8Google Scholar
  5. Branstator G (1995) Organization of storm track anomalies by recurring low-frequency circulation anomalies. J Atmos Sci 52:207–226CrossRefGoogle Scholar
  6. Buisman J (2006) Duizend jaar weer, wind en water in de lage landen. Deel 5:1675–1750, Uitgeverij Van Wijnen—Franeker, p 998Google Scholar
  7. Christensen JH, Carter T, Giorgi F (2002) PRUDENCE employs new methods to assess European climate change. EOS 83:147CrossRefGoogle Scholar
  8. Debernard J, Sætra Ø, Røed LP (2003) Future wind, wave and storm surge climate in the northern North Atlantic. Clim Res 23:39–49CrossRefGoogle Scholar
  9. De Kraker AMJ (1999) A method to assess the impact of high tides, storms and storm surges as vital elements in climate history. The case of stormy weather and dikes in the northern part of Flanders, 1488–1609. Clim Change 43:287–302CrossRefGoogle Scholar
  10. Dolata LF, Roeckner E, Behr H (1983) Prognostic storm surge simulation with a combined meteorological/oceanographic model. In: Sündermann J, Lenz W (eds) North Sea dynamics. Springer, Berlin, pp 266–278Google Scholar
  11. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688. doi: 10.1038/nature03906 CrossRefGoogle Scholar
  12. Feser F, von Storch H (2008) A dynamical downscaling case study for typhoons in SE Asia using a regional climate model. Mon Wea Rev (in press)Google Scholar
  13. Feser F, Weisse R, von Storch H (2001) Multidecadal atmospheric modelling for Europe yields multi-purpose data. EOS 82:305–310CrossRefGoogle Scholar
  14. Fischer G (1959) Ein numerisches Verfahren zur Errechnung von Windstau und Gezeiten in Randmeeres. Tellus 2:60–76CrossRefGoogle Scholar
  15. Fischer-Bruns I, von Storch H, González-Rouco F, Zorita E (2005) Modelling the variability of midlatitude storm activity on decadal to century time scales. Clim Dyn 25:461–476. doi: 10.1007/s00382-005-0036-1 CrossRefGoogle Scholar
  16. Flather RA, Smith JA (1998) First estimates of changes in extreme storm surge elevation due to doubling CO2. Glob Atmos Ocean Syst 6:193–208Google Scholar
  17. Flather RA, Smith JA, Richards JD, Bell C, Blackman DL (1998) Direct estimates of extreme storm surge elevations from a 40 year numerical model simulation and from observations. Glob Atmos Oc Syst 6:165–176Google Scholar
  18. Friedman RM (1989) Appropriating the weather. Vilhelm Bjerknes and the construction of a modern meteorology. Cornell University Press, Ithaca, p 251Google Scholar
  19. Gönnert G, Dube SK, Murty T, Siefert W (2001) Global storm surges. Die Küste—63, p 623Google Scholar
  20. Grossmann I, Woth K, von Storch H (2007) Localization of global climate change: storm surge scenarios for Hamburg in 2030 and 2085. Die Küste 71:169–182Google Scholar
  21. Heaps NS (1967) Storm surges. Oceanogr Mar Biol 5:11–47Google Scholar
  22. Heaps NS (1983) Storm surges, 1967–1982. Geophys J R Astr Soc 74:331–376Google Scholar
  23. Holland GJ, Webster PJ (2007) Heightened tropical cyclone activity in the North Atlantic: natural variability or climate trend? Philos Trans R Soc A. doi: 10.1098/rsta.2007.2083
  24. Hoozemans FMJ, Marchand M, Pennekamp HA (1993) A global vulnerability Analysis, Vulnerability assessments for population, coastal wetlands and rice production on a global scale, 2nd edn. Delft Hydraulics and Rijkswaterstaat, DelftGoogle Scholar
  25. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Cambridge University Press, London, p 881Google Scholar
  26. Hu K, Ding P, Ge J (2007) Modelling of storm surge in the coastal waters of Yangtze Estuary and Hangzhou Bay, China. J Coast Res SI:50Google Scholar
  27. Høyer JL, Andersen OB (2003) Improved description of sea level in the North Sea. J Geophys Res 108. doi: 10.1029/2002JC0011601
  28. Jensen J, Mudersbach C (2005) Zeitliche Änderungen in den Wasserstandszeitreihen an den Deutschen Küsten. In: Gönnert G, Grassl H, Kelletat D, Kunz H, Probst B, von Storch H, Sündermann J (eds) Klimaänderung und Küstenschutz, pp 115–128Google Scholar
  29. Jelesnianski CP (1965) A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf. Mon Wea Rev 93:343–360CrossRefGoogle Scholar
  30. Jelesnianski CP (1967) Numerical computations of storms urges with bottom stress. Mon Wea Rev 95:740–756CrossRefGoogle Scholar
  31. Kaas E, Andersen U, Flather RA, Willimas JA, Blackman DL, Lionello P, Dalan F, Elvini E, Nizzero A, Malguzzi P, Pfizenmayer A, von Storch H, Dillingh D, Phillipart N, de Ronde J, Reistad M, Midtbø KH, Vignes O, Haakenstad H, Hackett B, Fossum I, Sidselrud K (2001) Synthesis of the STOWASUS-2100 project: regional storm, wave and surge scenarios for the 2100 century. Danish Climate Centre Report 01-3, p 22Google Scholar
  32. Kauker F (1998) Regionalization of climate model results for the North Sea. Ph.D. thesis, University of Hamburg, p 109, GKSS 99/E/6Google Scholar
  33. Kauker F, Langenberg H (2000) Two models for the climate change related development of sea levels in the North Sea. A comparison. Clim Res 15:61–67CrossRefGoogle Scholar
  34. Knutson TR, Sirutis JJ, Garner ST, Held IM, Tuleya RE (2007) Simulation of the recent multi-decadal increase of Atlantic hurricane activity using an 18-km grid regional model. Bull Am Meteo Soc 88:1549–1565Google Scholar
  35. Kowalik Z, Murty TS (1993) Numerical modeling of ocean dynamics. World Scientific, Singapore, p 481Google Scholar
  36. Lambert SJ (1988) A cyclone climatology of the Canadian climate centre general circulation model. J Clim 1:109–115CrossRefGoogle Scholar
  37. Lambert SJ (1995) The effect of enhanced greenhouse warming on winter cyclone frequencies and strengths. J Clim 8:1447–1452CrossRefGoogle Scholar
  38. Lambert SJ (2004) Changes in winter cyclone frequencies and strengths in transient enhanced greenhouse warming simulations using two coupled climate models. Atmos Ocean 42:173–181CrossRefGoogle Scholar
  39. Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728. doi: 10.1007/s00382-006-0110-3 CrossRefGoogle Scholar
  40. Lambert SJ, Sheng J, Boyle JS (2002) Winter cyclone frequencies in thirteen models participating in the atmospheric model intercomparison project (AMIP1). Clim Dyn 19:1–16CrossRefGoogle Scholar
  41. Landerer W, Jungclaus JH, Marotzke J (2007) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37:296–312CrossRefGoogle Scholar
  42. Landman WA, Seth A, Camargo SJ (2005) The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the southwestern Indian Ocean. J Clim 18(8):1263–1274CrossRefGoogle Scholar
  43. Landsea CW (2005) Hurricanes and global warming. Nature 438:E11–E13CrossRefGoogle Scholar
  44. Landsea CW (2007) Counting Atlantic tropical cyclones back in time. EOS 88:197, 202Google Scholar
  45. Landsea CW, Pielke R Jr, Mestas-Nuñez AM, Knaff JA (1999) Atlantic Basin hurricanes: indices of climatic change. Clim Change 42:89–129CrossRefGoogle Scholar
  46. Langenberg H, Pfizenmayer A, von Storch H, Sündermann J (1999) Storm related sea level variations along the North Sea coast: natural variability and anthropogenic change. Cont Shelf Res 19:821–842CrossRefGoogle Scholar
  47. Lionello P, Elvini A, Nizzero A (2003) Ocean waves and storm surges in the Adriatic Sea: intercomparison between the present and doubled CO2 climate scenarios. Clim Res 23:217–231CrossRefGoogle Scholar
  48. Lionello P (2005) Extreme surges in the Gulf of Venice. Present and future climate. In: Fletcher C, Spencer T (eds) Venice and its lagoon. State of Knowledge Cambridge University Press, Cambridge, pp 59–65Google Scholar
  49. Lowe JA, Gregory JM, Flather RA (2001) Changes in the occurrence of storm surges in the United Kingdom under a future climate scenario using a dynamic storm surge model driven by the Hadley Center Climate models. Clim Dyn 18:197–188CrossRefGoogle Scholar
  50. Lowe JA, Gregory JM (2005) The effects of climate change on storm surges around the United Kingdom. Philos Trans R Soc A 363:1313–1328. doi: 10.1098/rsta.2005.1570 CrossRefGoogle Scholar
  51. Mann ME, Emanuel KA, Holland GJ, Webster PJ (2007) Atlantic tropical cyclones revisited. EOS 88:349–350CrossRefGoogle Scholar
  52. McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19:17–37CrossRefGoogle Scholar
  53. Nicholls RJ, Hoozemans FMJ (2000) Global vulnerability analysis. In: Schwartz M (ed) Encycopledia of coastal science. Kluwer Academic, DordrechtGoogle Scholar
  54. Niemeyer HD, Eiben H, Rohde H (1995) History and heritage of German Coastal engineering. In: Kraus NC (ed) History and heritage of coastal engineering. American Society of Civil Engineers, Reston, p 45Google Scholar
  55. Petersen M, Rohde H (1977) Sturmflut. Die grossen Fluten an den Küsten Schleswig-Holsteins und in der Elbe. Karl Wachholz Verlag, Neumünster, p 148Google Scholar
  56. Petzelberger BEM (2000) Coastal development and human activities in NW Germany. In: Pye K, Allen JRL (eds) Coastal and Estuarine environments: sedimentology, geomorphology and geoarchaeology. Geological Society, London. Spec Publ 175:365–376Google Scholar
  57. Pielke RA Jr, Gratz J, Landsea C, Collins D, Saunders M, Musulin R (2008) Normalized Hurricane Damages in the United States: 1900–2005. Natural Hazards Review (in press)Google Scholar
  58. Plüβ A (2004) Das Nordseemodell der BAW zur Simulation der Tide in der Deutschen Bucht. Die Küste 67:83–127Google Scholar
  59. Plüß A (2005) Küstenschutz in Hamburg. Nichtlineare Wechselwirkung der Tide auf Änderungen des Meeresspiegels im Übergangsbereich Küste/Ästuar am Beispiel der Elbe. In: Gönnert G, Grassl H, Kelletat D, Kunz H, Probst B, von Storch H, Sündermann J (eds) Klimaänderung und Küstenschutz, pp 129–138Google Scholar
  60. Rockel B, Woth K (2007) Future changes in near surface wind extremes over Europe from an ensemble of RCM simulations. Climate Change. doi:10.1007/s10584-006-9227-y http://dx.doi.org/10.1007/s10584-006-9227-y
  61. Schubert M, Perlwitz J, Blender R, Fraedrich K, Lunkeit F (1998) North Atlantic cyclones in CO2-induced warm climate simulations: frequency, intensity, and tracks. Clim Dyn 14:827–837CrossRefGoogle Scholar
  62. Somolon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Le Roy Milller H, Chen Z (2007) Climate change 2007. The physical basis. Cambridge University Press, Cambridge, p 996Google Scholar
  63. Sündermann J, Vollmers H (1972) Tidewellen in Ästuarien. Wasserwirtschaft 62:1–9Google Scholar
  64. Tol RSJ, Langen A (2000) A concise history of dutch river floods. Clim Change 46:357–369CrossRefGoogle Scholar
  65. Ulbrich U, Christoph M (1999) A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim Dyn 15:551–559CrossRefGoogle Scholar
  66. von Storch H (1995) Inconsistencies at the interface of climate impact studies and global climate research. Meteorol Zeitschrift 4 NF:72–80Google Scholar
  67. von Storch H, Reichardt H (1997) A scenario of storm surge statistics for the German Bight at the expected time of doubled atmospheric carbon dioxide concentration. J Clim 10:2653–2662CrossRefGoogle Scholar
  68. WASA (1998) Changing waves and storms in the Northeast Atlantic? Bull Am Met Soc 79:741–760CrossRefGoogle Scholar
  69. Weisse R, Plüß A (2005) Storm related sea level variations along the North Sea Coast as simulated by a high-resolution model 1958-2002. Ocean Dyn 56(1):16–25. doi: 10.1007/s10236-005-0037-y CrossRefGoogle Scholar
  70. Woth K (2005a) Projections of North Sea storm surge extremes in a warmer climate: how important are the RCM driving GCM and the chosen scenario? Geophys Res Lett 32:L22708. doi: 10.1029/2005GL023762 CrossRefGoogle Scholar
  71. Woth K (2005b) Regionalization of global climate change scenarios: an ensemble study of possible changes in the North Sea storm surge statistics. GKSS-Report 2006-13Google Scholar
  72. Woth K, Weisse R, von Storch H (2005) Dynamical modelling of North Sea storm surge extremes under climate change conditions—an ensemble study. Ocean Dyn. doi: 10.1007/s10236-005-0024-3
  73. Woth K, Weisse R (2008) Spatially high resolved projections of possible future changes in North Sea storm surge extremes. JCOMM Scientific and Technical Symposium on Storm Surges, 2–6 October 2007, Seoul, Korea Rep (in press)Google Scholar

Copyright information

© Integrated Research System for Sustainability Science and Springer 2008

Authors and Affiliations

  1. 1.Institute for Coastal Research, GKSS Research CenterGeesthachtGermany
  2. 2.Meteorologisches Institut, University of HamburgHamburgGermany

Personalised recommendations