Sustainability Science

, Volume 3, Issue 1, pp 9–22 | Cite as

Understanding global sea levels: past, present and future

  • John A. Church
  • Neil J. White
  • Thorkild Aarup
  • W. Stanley Wilson
  • Philip L. Woodworth
  • Catia M. Domingues
  • John R. Hunter
  • Kurt Lambeck
Special Feature: Original Article

Abstract

The coastal zone has changed profoundly during the 20th century and, as a result, society is becoming increasingly vulnerable to the impact of sea-level rise and variability. This demands improved understanding to facilitate appropriate planning to minimise potential losses. With this in mind, the World Climate Research Programme organised a workshop (held in June 2006) to document current understanding and to identify research and observations required to reduce current uncertainties associated with sea-level rise and variability. While sea levels have varied by over 120 m during glacial/interglacial cycles, there has been little net rise over the past several millennia until the 19th century and early 20th century, when geological and tide-gauge data indicate an increase in the rate of sea-level rise. Recent satellite-altimeter data and tide-gauge data have indicated that sea levels are now rising at over 3 mm year−1. The major contributions to 20th and 21st century sea-level rise are thought to be a result of ocean thermal expansion and the melting of glaciers and ice caps. Ice sheets are thought to have been a minor contributor to 20th century sea-level rise, but are potentially the largest contributor in the longer term. Sea levels are currently rising at the upper limit of the projections of the Third Assessment Report of the Intergovernmental Panel on Climate Change (TAR IPCC), and there is increasing concern of potentially large ice-sheet contributions during the 21st century and beyond, particularly if greenhouse gas emissions continue unabated. A suite of ongoing satellite and in situ observational activities need to be sustained and new activities supported. To the extent that we are able to sustain these observations, research programmes utilising the resulting data should be able to significantly improve our understanding and narrow projections of future sea-level rise and variability.

Keywords

Sea-level rise Climate change Coasts Extreme events IPCC Greenhouse 

Abbreviations

CryoSat-2

Second cryospheric satellite

GCOS

Global climate observing system

GFO

GeoSat follow-on satellite

GLONASS

Global orbiting navigation satellite system

GLOSS

Global sea-level observing system

GNSS

Global navigation satellite system

GOCE

Gravity field and steady-state ocean circulation explorer satellite

GPS

Global positioning system

GRACE

Gravity recovery and climate experiment satellite

ICESat

Ice, cloud and land elevation satellite

InSAR

Interferometric synthetic aperture radar

SLR

Satellite laser ranging

Notes

Acknowledgments

This paper is a contribution to the CSIRO Climate Change Research Program and the CSIRO Wealth from Oceans Flagship and was supported by the Australian Government’s Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems Cooperative Research Centre. JAC, NJW and JRH were partly funded by the Australian Climate Change Science Program.

References

  1. AchutaRao KM, Santer BD, Gleckler PJ, Taylor KE, Barnett TP, Gregory JM, Pierce DW, Stouffer RJ, Wigley TML (2007) Ocean temperature and heat content variability in the second half of the 20th century. Proc Natl Acad Sci 104:10768–10773CrossRefGoogle Scholar
  2. Alsdorf DE, Rodriguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45:RG2002CrossRefGoogle Scholar
  3. Antonov JI, Levitus S, Boyer TP (2005) Thermosteric sea level rise, 1955–2003. Geophys Res Lett 32:L12602. doi:10.1029/2005GL023112 CrossRefGoogle Scholar
  4. Beckley BD, Lemoine FG, Lutchke SB, Ray RD, Zelensky NP (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34:L14608. doi:10.1029/2007GL030002 CrossRefGoogle Scholar
  5. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev JS, Hanawa K, Le Querre C, Levitus S, Shum CK, Talley LD, Unnikrishnan A (2007) Chapter 5: Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt K, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental panel on climate change, Cambridge University Press, CambridgeGoogle Scholar
  6. Bird ECF (1993) Submerging coasts: the effects of a rising sea level on coastal environments. Wiley, ChichesterGoogle Scholar
  7. Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science 313:1958–1960CrossRefGoogle Scholar
  8. Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi:10.1029/2005GL024826 CrossRefGoogle Scholar
  9. Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Changes in sea level. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden P, Dai X, Maskell K, Johnson CI (eds) Climate change 2001: the scientific basis. Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  10. Church JA, White NJ, Coleman R, Lambeck K, Mitrovica JX (2004) Estimates of the regional distribution of sea level rise over the 1950–2000 period. J Clim 17:2609–2625CrossRefGoogle Scholar
  11. Church JA, White NJ, Arblaster JM (2005) Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature 438:74–77CrossRefGoogle Scholar
  12. Church JA, Hunter JR, McInnes KL, White NJ (2006) Sea-level rise around the Australian coastline and the changing frequency of extreme events. Aust Meteorol Mag 55:253–260Google Scholar
  13. Church J, Wilson S, Woodworth P, Aarup T (2007) Understanding sea level rise and variability. Meeting report. EOS Trans Am Geophys Union 88:43CrossRefGoogle Scholar
  14. Cogley JG (2005) Mass and energy balances of glaciers and ice sheets. In: Anderson MG (eds) Encyclopedia of hydrological sciences, vol 4. Wiley, Hoboken, New Jersey, pp 2555–2573Google Scholar
  15. Davis JL, Mitrovica JX (1996) Glacial isostatic adjustment and the anomalous tide gauge record of eastern North America. Nature 379:331–333CrossRefGoogle Scholar
  16. Davis CH, Li Y, McConnell JR, Frey MM, Hanna E (2005) Snowfall-driven growth in East Antarctic Ice Sheet mitigates recent sea-level rise. Science 308:1898–1901CrossRefGoogle Scholar
  17. Domingues CM, Church JA, White NJ, Gleckler P, Wijffels SE, Barker PM, Dunn JR (2008) Improved ocean-warming estimates: implications for climate models and sea-level rise. Nature (submitted)Google Scholar
  18. Donnelly JP, Cleary P, Newby P, Ettinger R (2004) Coupling instrumental and geological records of sea-level change: evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century. Geophys Res Lett 31:L05203. doi:10.1029/2003GL018933 CrossRefGoogle Scholar
  19. Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. Institute of Arctic and Alpine Research, University of Colorado, Colorado, Occasional Paper no 58, 177 ppGoogle Scholar
  20. Ekström G, Nettles M, Tsai VC (2006) Seasonality and increasing frequency of Greenland glacial earthquakes. Science 311:1756–1758CrossRefGoogle Scholar
  21. Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688CrossRefGoogle Scholar
  22. Ericson JP, Vörösmarty CJ, Dingman SL, Ward LG, Meybeck M (2006) Effective sea-level rise and deltas: causes of change and human dimension implications. Global Planet Change 50:63–82CrossRefGoogle Scholar
  23. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642CrossRefGoogle Scholar
  24. Gehrels WR, Kirby JR, Prokoph A, Newnham RM, Achterberg EP, Evans H, Black S, Scott DB (2005) Onset of recent rapid sea-level rise in the western Atlantic Ocean. Quat Sci Rev 24:2083–2100CrossRefGoogle Scholar
  25. Gehrels WR, Marshall WA, Gehrels MJ, Larsen G, Kirby JR, Eiríksson J, Heinemeier J, Shimmield T (2006) Rapid sea-level rise in the North Atlantic Ocean since the first half of the nineteenth century. Holocene 16:949–965CrossRefGoogle Scholar
  26. Gille ST (2008) Decadal-scale temperature trends in the southern hemisphere ocean. J Clim (submitted)Google Scholar
  27. Gilson J, Roemmich D, Cornuelle B, Fu L-L (1998) Relationship of TOPEX/Poseidon altimetric height to steric height and circulation in the North Pacific. J Geophys Res 103:27947–27965CrossRefGoogle Scholar
  28. Gleckler PJ, Wigley TML, Santer BD, Gregory JM, AchutaRao KM, Taylor KE (2006a) Volcanoes and climate: Krakatoa’s signature persists in the ocean. Nature 439:675CrossRefGoogle Scholar
  29. Gleckler PJ, AchutaRao KM, Gregory JM, Santer BD, Taylor KE, Wigley TML (2006b) Krakatoa lives: the effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys Res Lett 33:L17702. doi:10.1029/2006GL026771 CrossRefGoogle Scholar
  30. Gouretski V, Koltermann KP (2007) How much is the ocean really warming? Geophys Res Lett 34:L01610. doi:10.1029/2006GL027834 CrossRefGoogle Scholar
  31. Graumann A, Houson T, Lawrimore J, Levinson D, Lott N, McCown S, Stephens S, Wuertz D (2005) Hurricane Katrina: a climatological perspective. NOAA Technical Report no 2005-01, AshevilleGoogle Scholar
  32. Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Phil Trans Roy Soc A 364:1709–1731CrossRefGoogle Scholar
  33. Gregory JM, Lowe JA, Tett SFB (2006) Simulated global-mean sea level changes over the last half-millennium. J Clim 19:4576–4591. doi:10.1175/JCLI3881.1 CrossRefGoogle Scholar
  34. Guinehut S, Le Traon P-Y, Larnicol G (2006) What can we learn from global altimetry/hydrography comparisons? Geophys Res Lett 33:L10604. doi:10.1029/2005GL025551 CrossRefGoogle Scholar
  35. Hansen JE (2007) Scientific reticence and sea level rise. Environ Res Lett 2:1–6CrossRefGoogle Scholar
  36. Holgate SJ, Woodworth PL (2004) Evidence for enhanced coastal sea level rise during the 1990s. Geophys Res Lett 31:L07305. doi:10.1029/2004GL019626 CrossRefGoogle Scholar
  37. Holgate SJ, Jevrejeva S, Woodworth PL, Brewer S (2007) Comment on “A semi-empirical approach to projecting future sea-level rise.” Science 317:1866CrossRefGoogle Scholar
  38. Hunter J, Coleman R, Pugh D (2003) The sea level at Port Arthur, Tasmania, from 1841 to the present. Geophys Res Lett 30:1401. doi:10.1029/2002GL016813 CrossRefGoogle Scholar
  39. Huybrechts P, de Wolde J (1999) Dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Clim 12:2169–2188CrossRefGoogle Scholar
  40. IPCC (2001) In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Climate change 2001: impacts, adaptation and vulnerability. Cambridge University Press, CambridgeGoogle Scholar
  41. IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt K, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental panel on climate change, Cambridge University Press, CambridgeGoogle Scholar
  42. Ishii M, Kimoto M, Sakamoto K, Iwasaki S-I (2006) Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J Oceanogr 62:155–170CrossRefGoogle Scholar
  43. Jevrejeva S, Grinsted A, Moore JC, Holgate SJ (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111:C09012. doi:10.1029/2005JC003229 CrossRefGoogle Scholar
  44. Joughin I, Rignot E, Rosanova CE, Lucchitta BK, Bohlander J (2003) Timing of recent accelerations of Pine Island Glacier, Antarctica. Geophy Res Lett 30:1706. doi:10.1029/2003GL017609 CrossRefGoogle Scholar
  45. Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett 33:L19501. doi:10.1029/2006GL027511 CrossRefGoogle Scholar
  46. Krabill WB, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24402. doi:10.1029/2004GL021533 CrossRefGoogle Scholar
  47. Lambeck K (2002) Sea level change from mid Holocene to recent time: an Australian example with global implications. In: Ice sheets, sea level and the dynamic earth. Geodynamics series 29, American Geophysical Union, Washington, DC, pp 33–50Google Scholar
  48. Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686CrossRefGoogle Scholar
  49. Lambeck K, Nakiboglu SM (1984) Recent global changes in sea level. Geophys Res Lett 11:959–961CrossRefGoogle Scholar
  50. Lambeck K, Yokoyama Y, Purcell T (2002) Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2. Quat Sci Rev 21(1):343–360CrossRefGoogle Scholar
  51. Lambeck K, Anzidei M, Antonioli F, Benini A, Esposito A (2004) Sea level in Roman time in the Central Mediterranean and implications for recent change. Earth Planet Sci Lett 224:563–575CrossRefGoogle Scholar
  52. Lemke P, Ren J, Alley R, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas R, Zhang T (2007) Chapter 4: Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt K, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental panel on climate change, Cambridge University Press, CambridgeGoogle Scholar
  53. Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314:1286–1289CrossRefGoogle Scholar
  54. Lyman JM, Willis JK, Johnson GC (2006) Recent cooling of the upper ocean. Geophys Res Lett 33:L18604. doi:10.1029/2006GL027033 CrossRefGoogle Scholar
  55. Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Strand WG, Teng H (2005) How much more global warming and sea level rise? Science 307:1769–1772CrossRefGoogle Scholar
  56. Meehl GA, Stocker TF, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  57. Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Tad Pfeffer W, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317:1064–1067CrossRefGoogle Scholar
  58. Milly PCD, Cazenave A, Gennero MC (2003) Contribution of climate-driven change in continental water storage to recent sea-level rise. Proc Natl Acad Sci 100:13158–13161CrossRefGoogle Scholar
  59. Mitrovica JX, Tamisiea M, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029CrossRefGoogle Scholar
  60. Monaghan AJ, Bromwich DH, Fogt RL, Wang S-H, Mayewski PA, Dixon DA, Ekaykin A, Frezzotti M, Goodwin I, Isaksson E, Kaspari SD, Morgan VI, Oerter H, Van Ommen TD, Van der Veen CJ, Wen J (2006) Insignificant change in Antarctic snowfall since the International Geophysical Year. Science 313:827–831CrossRefGoogle Scholar
  61. Murty TS, Flather RA (1994) Impact of storm surges in the Bay of Bengal. J Coastal Res 12:149–161Google Scholar
  62. Murty TS, Flather RA, Henry RF (1986) The storm surge problem in the Bay of Bengal. Prog Oceanogr 16:195–233CrossRefGoogle Scholar
  63. Ngo-Duc T, Laval K, Plocher J, Lombard A, Cazenave A (2005) Effects of land water storage on global mean sea level over the past half century. Geophys Res Lett 32:9704–9707CrossRefGoogle Scholar
  64. Nicholls RJ (1995) Coastal megacities and climate change. GeoJournal 37(3):369–379CrossRefGoogle Scholar
  65. Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A; CAPE Last Interglacial Project members (2006) Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311:1751–1753CrossRefGoogle Scholar
  66. Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750CrossRefGoogle Scholar
  67. Peltier WR (1998) Postglacial variations in the level of the sea: implications for climate dynamics and solid-earth geophysics. Rev Geophys 36:603–689CrossRefGoogle Scholar
  68. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370CrossRefGoogle Scholar
  69. Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709. doi:10.1126/science.1136843 CrossRefGoogle Scholar
  70. Ramillien G, Lombard A, Cazenave A, Ivins ER, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global Planet Change 53:198–208CrossRefGoogle Scholar
  71. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311:986–990CrossRefGoogle Scholar
  72. Rignot E, Casassa G, Gogineni P, Kraybill W, Rivera A, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:L18401. doi:10.1029/2004GL020697 CrossRefGoogle Scholar
  73. Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Riser S (2007) Decadal spinup of the South Pacific subtropical gyre. J Phys Oceanogr 37:162–173CrossRefGoogle Scholar
  74. Scambos TA, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31:L18402. doi:10.1029/2004GL020670 CrossRefGoogle Scholar
  75. Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coastal Res 19(3):584–599Google Scholar
  76. Stirling CH, Esat TM, Lambeck K, McCulloch MT (1998) Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral reef growth. Earth Planet Sci Lett 160:745–762CrossRefGoogle Scholar
  77. Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuña C, Atkins T, Brecher H, Frederick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306:255–258CrossRefGoogle Scholar
  78. Thomas R, Frederick E, Krabill W, Manizade S, Martin C (2006) Progressive increase in ice loss from Greenland. Geophys Res Lett 33:L10503. doi:10.1029/2006GL026075 CrossRefGoogle Scholar
  79. Velicogna I, Wahr J (2005) Greenland mass balance from GRACE. Geophys Res Lett 32:L18505. doi:10.1029/2005GL023955 CrossRefGoogle Scholar
  80. Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846CrossRefGoogle Scholar
  81. White WB, Tai C-K (1995) Inferring interannual changes in global upper ocean heat storage from TOPEX altimetry. J Geophys Res 100:24943–24954. doi:10.1029/95JC02332 CrossRefGoogle Scholar
  82. Wigley TML (1995) Global-mean temperature and sea level consequences of greenhouse gas concentration stabilization. Geophys Res Lett 22:45–48CrossRefGoogle Scholar
  83. Wigley TML (2005) The climate change commitment. Science 307:1766–1769CrossRefGoogle Scholar
  84. Wijffels SE, Willis JK, Domingues CM, Barker P, White NJ, Gronell A, Ridgway K, Church JA (2008) Changing eXpendable bathythermograph fall-rates and their impact on estimates of thermosteric sea level rise. J Clim (in press)Google Scholar
  85. Willis JK, Roemmich D, Cornuelle B (2003) Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. J Geophys Res 108:3292. doi:10.1029/2002JC001755 CrossRefGoogle Scholar
  86. Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036. doi: 10.1029/2003JC002260 CrossRefGoogle Scholar
  87. Willis JK, Lyman JM, Johnson GC, Gilson J (2007) Correction to “Recent cooling of the upper ocean.” Geophys Res Lett 34:L16601. doi:10.1029/2007GL030323 CrossRefGoogle Scholar
  88. Wolf J, Flather RA (2005) Modelling waves and surges during the 1953 storm. Philos Trans Roy Soc 363:1359–1375. doi:10.1098/rsta.2005.1572 CrossRefGoogle Scholar
  89. Woodworth PL (1999) High waters at Liverpool since 1768: the UK’s longest sea level record. Geophys Res Lett 26(11):1589–1592CrossRefGoogle Scholar
  90. Woodworth PL, Blackman DL (2004) Evidence for systematic changes in extreme high waters since the mid-1970s. J Clim 17:1190–1197CrossRefGoogle Scholar
  91. Woodworth PL, Player R (2003) The permanent service for mean sea level: an update to the 21st century. J Coastal Res 19:287–295Google Scholar
  92. Woodworth PL, White NJ, Jevrejeva S, Holgate S, Church JA, Gehrels R (2008) Evidence for the recent accelerations of sea level on multi-decade and century timescales. Int J Climatol (submitted)Google Scholar
  93. Zwally JH, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222CrossRefGoogle Scholar
  94. Zwally JH, Giovinetto MB, Li J, Cornejo HG, Beckley MA, Brenner AC, Saba JL, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J Glaciol 51:509–527CrossRefGoogle Scholar

Copyright information

© Integrated Research System for Sustainability Science and Springer 2008

Authors and Affiliations

  • John A. Church
    • 1
    • 2
  • Neil J. White
    • 1
    • 2
  • Thorkild Aarup
    • 3
  • W. Stanley Wilson
    • 4
  • Philip L. Woodworth
    • 5
  • Catia M. Domingues
    • 1
  • John R. Hunter
    • 2
  • Kurt Lambeck
    • 2
    • 6
  1. 1.Centre for Australian Weather and Climate Research—A Partnership Between CSIRO and the Australian Bureau of Meteorology and CSIROCSIRO Marine and Atmospheric ResearchHobartAustralia
  2. 2.Antarctic Climate and Ecosystems Cooperative Research CentreHobartAustralia
  3. 3.Intergovernmental Oceanographic CommissionUNESCOParisFrance
  4. 4.U.S. National Oceanic and Atmospheric Administration (NOAA)WashingtonUSA
  5. 5.Permanent Service for Mean Sea LevelProudman Oceanographic LaboratoryLiverpoolUK
  6. 6.Research School of Earth SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations