Datenschutz und Datensicherheit - DuD

, Volume 38, Issue 1, pp 25–30 | Cite as

Heterogeneous networking

Security Challenges and Considerations
  • Amandeep Singh
  • Gaston Ormazábal
  • Henning Schulzrinne


In this article, security challenges related to a mobile heterogeneous networking environment, and the general access patterns are discussed. A novel, unified networking architecture that enables secure heterogeneous networking, both in terms of networks and user devices is discussed. A comprehensive security framework providing a generalized authentication scheme using the Extensible Authentication Protocol (EAP) is then presented, by taking into account existing methods for secure network and device access.


Mobile Node Mobility Manager Correspondent Node Medium Independent Handover Extensible Authentication Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cisco Visual Networking Index. White Paper. Cisco Systems Inc., Jun. 2013.Google Scholar
  2. [2]
    A. Singh, G. Ormazábal and H. Schulzrinne. Heterogeneous Access: Survey and Design Considerations. Technical Report. Columbia University, Oct. 2013.Google Scholar
  3. [3]
    A. Singh, G. Ormazábal, H. Schulzrinne, Y. Zou, P. Thermos and S. Addepalli. Unified Heterogeneous Networking Design. IPTComm 2013, Chicago, USA. IPTComm ACM Proceedings, Oct. 2013.CrossRefGoogle Scholar
  4. [4]
    IEEE Standard for Local and Metropolitan Area Networks — Part 21: Media Independent Handover Services,
  5. [5]
  6. [6]
    B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, H. Levkowetz, Extensible Authentication Protocol (EAP), IETF RFC 3748, Jun 2004.Google Scholar
  7. [7]
    J. Arkko, V. Lehtovirta, and P. Eronen, Improved Extensible Authentication Protocol Method for 3rd Generation Authentication and Key Agreement (EAP-AKA’), IETF RFC 5448,
  8. [8]
    C. He and J. C. Mitchell, Security Analysis and Improvements for IEEE 802.11i, The 12th Annual Network and Distributed System Security Symposium (NDSS’05) Stanford University, Stanford. 2005.Google Scholar
  9. [9]
    T. Aura, “Cryptographically Generated Addresses (CGA)”, RFC 3972, Mar. 2005, Google Scholar
  10. [10]
    S. Jiang and S. Shen, “Secure DHCPv6 Using CGAs”, IETF Internet Draft, Sep. 2012, Google Scholar
  11. [11]
    J. Arkko, J. Kempf, B. Zill, P. Nikander, “SEcure Neighbor Discovery (SEND)”, RFC 3971, Mar. 2005, Google Scholar
  12. [12]
    S. Gundavelli, K. Leung, V. Devarapalli, Wichorus, K. Chowdhary, and B. Patil, Proxy Mobile IPv6, RFC 5213, Aug 2008, Google Scholar
  13. [13]
    C. Perkins, D. Johnson, and J. Arkko. Mobility Support in IPv6. IETF RFC 6275, July 2011.Google Scholar
  14. [14]
    P. Nikander, T. Henderson, C. Vogt, and J. Akko. End-Host Mobility and Multi-homing with Host Identity Protocol. IETF RFC 5206, Apr. 2008.Google Scholar
  15. [15]
    Open Networking Foundation,

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • Amandeep Singh
  • Gaston Ormazábal
  • Henning Schulzrinne

There are no affiliations available

Personalised recommendations