Advertisement

Zeitschrift für Erziehungswissenschaft

, Volume 22, Issue 6, pp 1313–1332 | Cite as

Intelligence and knowledge: the relationship between preschool teachers’ cognitive dispositions in the field of mathematics

  • Lars JenßenEmail author
  • Simone Dunekacke
  • Jan-Eric Gustafsson
  • Sigrid Blömeke
Allgemeiner Teil
  • 58 Downloads

Abstract

A large research gap exists between psychological research about intelligence on the one hand and educational research about competence on the other hand. Both constructs are only rarely examined within one study. From an educational psychology point of view and for construct validation of competence tests, this is necessary though to gain more insight into the relation of the domain-specific constructs. The present article examined the relation between two domain-specific facets of preschool teachers’ competence, mathematical content knowledge (MCK) and mathematics pedagogical content knowledge (MPCK), to intelligence by hypothesizing a nested-factor model. Three hundred and fifty-three preservice preschool teachers were tested on their MCK and MPCK and took the screening version of I‑S‑T 2000 R covering verbal, numerical, and figural intelligence. The data revealed, as expected, a strong impact of intelligence on the ability to solve the domain-specific test items. Nevertheless, MCK and MPCK had a significant additional impact on this ability. The initially strong relation of the two domain-specific constructs could fully be explained by the higher-order g factor which supported construct validity of the assessments furthermore. The discussion focusses on implications for measurement issues and future research besides practical suggestions.

Keywords

Intelligence Mathematics Nested-factor model Preschool teacher Professional knowledge 

Intelligenz und professionelles Wissen: das Zusammenspiel kognitiver Dispositionen im Bereich Mathematik bei angehenden frühpädagogischen Fachkräften

Zusammenfassung

Nach wie vor besteht eine große Forschungslücke zu dem Verhältnis von Intelligenz und Kompetenz. Beide Konstrukte werden bisher nur selten in einer Studie untersucht. Aus Sicht der Kompetenzforschung und zur Konstruktvalidierung der Kompetenztests ist dies jedoch unabdingbar. Die vorliegende Studie untersucht die Beziehung zwischen dem mathematischen Fachwissen und dem mathematikdidaktischen Wissen als Teile professioneller Kompetenz von frühpädagogischen Fachkräften zu ihrer Intelligenz unter der Annahme eines Modells mit genesteten Faktoren. Dafür wurden n = 353 angehende frühpädagogische Fachkräfte mithilfe zweier Wissenstests und dem IST-Screening zur Erfassung verbaler, numerischer und figuraler Intelligenz getestet. Erwartungsgemäß konnte ein starker Effekt von Intelligenz für die Bearbeitung der Wissenstests festgestellt werden. Dennoch konnten die spezifischen Faktoren zusätzliche Varianz in den Lösungen aufklären. Der ursprüngliche starke Zusammenhang zwischen den beiden Wissensfaktoren konnte vollständig durch den Faktor allgemeiner kognitiver Fähigkeiten aufgeklärt werden. Die Ergebnisse werden vor allem aus psychometrischer Perspektive diskutiert. Praktische Empfehlungen runden den Beitrag ab.

Schlüsselwörter

Intelligenz Professionelles Wissen Mathematik Nested-factor model Frühpädagogik 

References

  1. AERA, APA, & NCME (2014). Standards for educational and psychological testing. Washington, DC: American Psychological Association.Google Scholar
  2. Amthauer, R., Brocke, B., Liepmann, D., & Beauducel, A. (2001). Intelligenz-Struktur-Test 2000 R (I-S‑T 2000 R). Göttingen: Hogrefe.Google Scholar
  3. Anastasi, A. (1964). Culture-fair testing. Educational Horizons, 43(1), 26–30.Google Scholar
  4. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: what makes it special? Journal of Teacher Education, 59, 389–407.Google Scholar
  5. Barrett, G. V., & Depinet, R. L. (1991). A reconsideration of testing for competence rather than for intelligence. American Psychologist, 46(10), 1012–1024.  https://doi.org/10.1037/0003-066X.46.10.1012.CrossRefGoogle Scholar
  6. Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., & Tsai, Y.-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom and student progress. American Educational Research Journal, 47, 133–180.  https://doi.org/10.3102/0002831209345157.CrossRefGoogle Scholar
  7. Baumert, J., Lüdtke, O., Trautwein, U., & Brunner, M. (2009). Large-scale assessment studies measure the results of processes of knowledge acquisition: evidence in support of the distinction between intelligence and student achievement. Educational Research Review, 4, 165–176.  https://doi.org/10.1016/j.edurev.2009.04.002.CrossRefGoogle Scholar
  8. Beauducel, A., & Kersting, M. (2002). Fluid and crystallized intelligence and the Berlin Model of Intelligence Structure (BIS). European Journal of Psychological Assessment, 18(2), 97–112.  https://doi.org/10.1027//1015-5759.18.2.97.CrossRefGoogle Scholar
  9. Beauducel, A., Brocke, B., & Liepmann, D. (2001). Perspectives on fluid and crystallized intelligence: facets for verbal, numerical, and figural intelligence. Personality and Individual Differences, 30, 977–994.  https://doi.org/10.1016/S0191-8869(00)00087-8.CrossRefGoogle Scholar
  10. Binet, A. (1911). Les idees modernes sur les enfants. Paris: Flammarion.Google Scholar
  11. Blömeke, S., & Delaney, S. (2014). Assessment of teacher knowledge across countries: a review of the state of research. In S. Blömeke, F.-J. Hsieh, G. Kaiser & W. H. Schmidt (Eds.), International perspectives on teacher knowledge, beliefs and opportunities to learn, advances in mathematics education (pp. 541–585). Dordrecht: Springer.Google Scholar
  12. Blömeke, S., & Jenßen, L. (2016). A question of validity: clarifying the hierarchical nature of teacher cognition. In M. Rosén, K. Yang Hansen & U. Wolff (Eds.), Cognitive abilities and educational achievement: measurement and determinants. A festschrift in honor of Jan-Eric Gustafsson (pp. 89–110). Cham: Springer.Google Scholar
  13. Blömeke, S., & Suhl, U. (2010). Modellierung von Lehrerkompetenzen Nutzung unterschiedlicher IRT-Skalierungen zur Diagnose von Stärken und Schwächen deutscher Referendarinnen und Referendare im internationalen Vergleich. Zeitschrift für Erziehungswissenschaft, 13, 473–505.Google Scholar
  14. Blömeke, S., Gustafsson, J.-E., & Shavelson, R. (2015a). Beyond dichotomies: competence viewed as a continuum. Zeitschrift für Psychologie/Journal of Psychology, 223, 3–13.Google Scholar
  15. Blömeke, S., Houang, R. T., & Suhl, U. (2011). TEDS-M: Diagnosing teacher knowledge by applying multidimensional item response theory and multiple-group models (IERI monograph series: issues and methodologies in large-scale assessments, Vol. 4, pp. 109–129).Google Scholar
  16. Blömeke, S., Jenßen, L., Dunekacke, S., Suhl, U., Grassmann, M., & Wedekind, H. (2015b). Leistungstests zur Messung der professionellen Kompetenz frühpädagogischer Fachkräfte. Zeitschrift für Pädagogische Psychologie, 29(3/4), 177–191.Google Scholar
  17. Blömeke, S., Jenßen, L., Grassmann, M., Dunekacke, S., & Wedekind, H. (2016). Process mediates structure: relation of preschool teacher education to preschool teachers’ knowledge. Journal of Educational Psychology, 109(3), 338–354.Google Scholar
  18. Blömeke, S., Kaiser, G., & Lehmann, R. (2010). TEDS‑M 2008. Professionelle Kompetenz und Lerngelegenheiten angehender Primarstufenlehrkräfte im internationalen Vergleich. Münster: Waxmann.Google Scholar
  19. Brunner, M., Krauss, S., & Kunter, M. (2008). Gender differences in mathematics: Does the story need to be rewritten? Intelligence, 36, 403–421.  https://doi.org/10.1016/j.intell.2007.11.002.CrossRefGoogle Scholar
  20. Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C.-P., & Loef, M. (1989). Using knowledge of children’s mathematics thinking in classroom teaching: an experimental study. American Educational Research Journal, 26(4), 499–531.  https://doi.org/10.3102/00028312026004499.CrossRefGoogle Scholar
  21. Carroll, J. B. (1993). Human cognitive abilities. A survey of factor-analytic studies. Cambridge: Cambridge University Press.Google Scholar
  22. Cattell, R. B. (1943). The measurement of adult intelligence. Psychological Bulletin, 40, 153–193.  https://doi.org/10.1037/h0059973.CrossRefGoogle Scholar
  23. Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: a critical experiment. Journal of Educational Psychology, 54(1), 1–22.  https://doi.org/10.1037/h0046743.CrossRefGoogle Scholar
  24. Clements, D. H., & Sarama, J. (2011). Early childhood mathematics intervention. Science, 333, 968–970.  https://doi.org/10.1126/science.1204537.CrossRefGoogle Scholar
  25. Cliffordson, C., & Gustafsson, J.-E. (2008). Effects of age and schooling on intellectual performance: estimates obtained from analysis of continuous variation in age and length of schooling. Intelligence, 36, 143–152.Google Scholar
  26. Common Core State Standards Initiative (2014). Common core state standards for mathematics. http://www.corestandards.org/wp-content/uploads/Math_Standards.pdf. Accessed: 19. March 2014.
  27. Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35, 13–21.  https://doi.org/10.1016/j.intell.2006.02.001.CrossRefGoogle Scholar
  28. Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: a systematic review of the way in which the concept has pervaded mathematics educational research. Teaching and Teacher Education, 34, 12–25.  https://doi.org/10.1016/j.tate.2013.03.001.CrossRefGoogle Scholar
  29. Dunekacke, S., Jenßen, L., Eilerts, K., & Blömeke, S. (2016). Epistemological beliefs of prospective pre-school teachers and their relation to knowledge, perception and planning abilities in the field of mathematics: A process-model. ZDM. The International Journal on Mathematics Education.  https://doi.org/10.1007/s11858-015-0711-6.CrossRefGoogle Scholar
  30. Early, D. M., Bryant, D. M., Pianta, R. C., Clifford, R. M., Burchinal, M. R., Ritchie, S., Howes, C., & Barbarin, O. (2006) Are teachers’ education, major, and credentials related to classroom quality and children’s academic gains in pre-kindergarten? Early Childhood Research Quarterly, 21(2), 174–195.Google Scholar
  31. Early, D. M., Maxwell, K. L., Burchinal, M., Alva, S., Bender, R. H., Bryant, D., Cai, K., Clifford, R. M., Ebanks, C., Griffin, J. A., Henry, G. T., Howes, C., Iriondo-Perez, J., Jeon, H.-J., Mashburn, A. J., Peisner-Feinberg, E., Pianta, R. C., Vandergrift, N., & Zill, N. (2007) Teachers’ Education, Classroom Quality, and Young Children’s Academic Skills: Results From Seven Studies of Preschool Programs. Child Development, 78(2), 558–580Google Scholar
  32. Eid, M., Geiser, C., Koch, T., & Heene, M. (2016). Anomalous results in g-factor models: explanations and alternatives. Psychological Methods.  https://doi.org/10.1037/met0000083.CrossRefGoogle Scholar
  33. Eid, M., Lischetzke, T., Nussbeck, F. W., & Trierweiler, L. I. (2003). Separating trait effects from trait-specific method effects in multitrait-multimethod models: a multiple-indicator CT-C(M-1) model. Psychological Methods, 8(1), 38–60.  https://doi.org/10.1037/1082-989X.8.1.38.CrossRefGoogle Scholar
  34. European Commission, EACEA, Eurydice, & Eurostat (2014). Key data on early childhood education and care in europe. 2014 edition (Eurydice and Eurostat report). Luxembourg: Publications Office of the European Union.Google Scholar
  35. Franke, M. L., Carpenter, T. P., Levi, L., & Fennema, E. (2001). Capturing teachers’ generative change: a follow-up study of professional development in mathematics. American Educational Research Journal, 38(3), 653–689.  https://doi.org/10.3102/00028312038003653.CrossRefGoogle Scholar
  36. García, O., López, F., Icaran, E., & Burgos, S. (2014). Relationship between general intelligence, competences and academic achievement among university students. Personality and Individual Differences, 60, 48–78.  https://doi.org/10.1016/j.paid.2013.07.296.CrossRefGoogle Scholar
  37. Ginsburg, H. P., & Ertle, B. (2008). Knowing the mathematics in early childhood mathematics. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 45–66). Charlotte: Information AGE.Google Scholar
  38. Gustafsson, J.-E. (1984). A unifying model for the structure of intellectual abilities. Intelligence, 8, 179–203.Google Scholar
  39. Gustafsson, J.-E. (1994). Hierarchical models of intelligence and educational achievement. In A. Demetriou & A. Efklides (Eds.), Intelligence, mind, and reasoning: structure and development. Amsterdam: Elsevier.Google Scholar
  40. Gustafsson, J.-E., & Undheim, J. O. (1996). Individual differences in cognitive functions. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology (pp. 186–242). New York: Macmillan.Google Scholar
  41. Gustafsson, J. E., & Balke, G. (1993). General and specific abilities as predictors of school achievement. Multivariate Behavioral Research, 28(4), 407–434.Google Scholar
  42. Hamre, B. K., Pianta, R. C., Burchinal, M., Field, S., LoCasale-Crouch, J., Downer, J. T., & Scott-Little, C. (2012). A course on effective teacher child interactions: effects on teacher beliefs, knowledge, and observed practice. American Educational Research Journal, 49, 88–123.  https://doi.org/10.3102/0002831211434596.CrossRefGoogle Scholar
  43. Härnqvist, K., Gustafsson, J.-E., Muthén, B. O., & Nelson, G. (1994). Hierarchical models of ability at individual and class levels. Intelligence, 18, 165–187.Google Scholar
  44. Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–406.  https://doi.org/10.3102/00028312042002371.CrossRefGoogle Scholar
  45. Horn, J. L. (1994). Theory of fluid and crystallized intelligence. In R. J. Sternberg (Ed.), Encyclopedia of human intelligence (pp. 443–451). New York: Macmillan.Google Scholar
  46. Jäger, A. O. (1982). Mehrmodale Klassifikation von Intelligenzleistungen: Experimentell kontrollierte Weiterentwicklung eines deskriptiven Intelligenzstrukturmodells. Diagnostica, 28, 195–225.Google Scholar
  47. Jensen, A. R. (1998). The g factor. The science of mental ability. Westport: Praeger.Google Scholar
  48. Jenßen, L., Dunekacke, S., Baack, W., Tengler, M., Wedekind, H., Grassmann, M., & Blömeke, S. (2013). Validating an assessment of pre-school teachers’ mathematical knowledge (in Proceedings of the 37th conference of the International Group for the Psychology of Mathematics Education).Google Scholar
  49. Kaarstein, H. (2014). A comparison of three frameworks for measuring knowledge for teaching mathematics. Nordic Studies in Mathematics Education, 19(1), 23–52.Google Scholar
  50. Kersting, N. B., Givvin, K. B., Thompson, B. J., Santagata, R., & Stigler, J. W. (2012). Measuring usable knowledge: Teachers’ analyses of mathematics classroom videos predict teaching quality and student learning. American Educational Research Journal, 49, 568–589.  https://doi.org/10.3102/0002831212437853.CrossRefGoogle Scholar
  51. Kilday, C. R., & Kinzie, M. B. (2009). An analysis of instruments that measure the quality of mathematics teaching in early childhood. Early Childhood Education Journal, 36(4), 365–372.  https://doi.org/10.1007/s10643-008-0286-8.CrossRefGoogle Scholar
  52. Kleickmann, T., Richter, D., Kunter, M., Elsner, J., Besser, M., Krauss, S., & Baumert, J. (2013). Teachers’ content knowledge and pedagogical content knowledge: the role of structural differences in teacher education. Journal of Teacher Education, 64, 90–106.  https://doi.org/10.1177/0022487112460398.CrossRefGoogle Scholar
  53. Klieme, E., Hartig, J., & Rauch, D. (2008). The concept of competence in educational contexts. In J. Hartig, E. Klieme & D. Leutner (Eds.), Assessment of competencies in educational contexts: state of the art and future prospects (pp. 3–22). Göttingen: Hogrefe.Google Scholar
  54. KMK (2004). Bildungsstandards im Fach Mathematik für den Primarbereich: Beschluss vom 15.10.2004. Munich: Wolters Kluwer.Google Scholar
  55. Kvist, A. V., & Gustafsson, J.-E. (2008). The relation between fluid intelligence and the general factor as a function of cultural background: a test of Cattell’s investment theory. Intelligence, 36, 422–436.Google Scholar
  56. Lemos, G. C., Abad, F. J., Almeida, L. S., & Colom, R. (2014). Past and future academic experience are related with present scholastic achievement when intelligence is controlled. Learning and Individual Differences, 32, 148–155.  https://doi.org/10.1016/j.lindif.2014.01.004.CrossRefGoogle Scholar
  57. Liepmann, D., Beauducel, A., Brocke, B., & Nettelnstroth, W. (2012). Intelligenz-Struktur-Test Screening (IST-Screening). Göttingen: Hogrefe. Screening test of intelligence structureGoogle Scholar
  58. Lubinski, D. (2004). Introduction to the special section on cognitive abilities: 100 years after Spearman’s (1904) “‘General intelligence’, objectively determined and measured”. Journal of Personality and Social Psychology, 86(1), 96–111.Google Scholar
  59. McCallum, R. S., Bracken, B. A., & Wasserman, J. D. (2001). Essentials of nonverbal assessment. Essentials of psychological assessment series. Hoboken: John Wiley & Sons.Google Scholar
  60. McClelland, D. C. (1973). Testing for competence rather than for “intelligence”. American Psychologist, 28, 1–14.  https://doi.org/10.1037/h0034092.CrossRefGoogle Scholar
  61. Muthén, L. K., & Muthén, B. O. (2007). Mplus user’s guide (5th edn.). Los Angeles: Muthén & Muthén.Google Scholar
  62. Nolan, B., Dempsey, M., Lovatt, J., & O’Shea, A. (2015). Developing mathematical knowledge for teaching (MKT) for pre-service teachers: a study of students’ developing thinking in relation to the teaching of mathematics. Proceedings of the British Society for Research into Learning Mathematic, 35(1), 54–59.Google Scholar
  63. Nunes, T., & Bryant, P. (1997). Learning and teaching mathematics: an international perspective. New York: Psychology Press.Google Scholar
  64. Oppermann, E., Anders, Y., & Hachfeld, A. (2016). The influence of preschool teachers’ content knowledge and mathematical ability beliefs on their sensitivity to mathematics in children’s play. Teaching and Teacher Education, 58, 174–184.  https://doi.org/10.1016/j.tate.2016.05.004.CrossRefGoogle Scholar
  65. Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students’ academic performance: a systematic review and meta-analysis. Psychological Bulletin, 138(2), 353–387.  https://doi.org/10.1037/a0026838.CrossRefGoogle Scholar
  66. Rindermann, H. (2007). The g‑factor of international cognitive ability comparisons: the homogeneity of results in PISA, TIMSS, PIRLS and IQ-tests across nations. European Journal of Personality, 21, 667–706.  https://doi.org/10.1002/per.634.CrossRefGoogle Scholar
  67. Schipolowski, S., Wilhelm, O., & Schroeders, U. (2014). On the nature of crystallized intellligence: the relationship between verbal abiltiy and factual knowledge. Intelligence, 46, 156–168.  https://doi.org/10.1016/j.intell.2014.05.014.CrossRefGoogle Scholar
  68. Schroeders, U., Schipolowski, S., & Wilhelm, O. (2015). Age-related changes in the mean and covariance structure of fluid and crystallized intelligence in childhood and adolescence. Intelligence, 48, 15–29.  https://doi.org/10.1016/j.intell.2014.10.006.CrossRefGoogle Scholar
  69. Shavelson, R. J. (2013). An approach to testing and modeling competence. In S. Blömeke, O. Zlatkin-Trotischanskaia, C. Kuhn & J. Fege (Eds.), Modeling and measuring competencies in higher education. Rotterdam: Sense.Google Scholar
  70. Shulman, L. S. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, 15(2), 4–14Google Scholar
  71. Spearman, C. (1927). The abilities of man: their nature and measurement. London: Macmillan.Google Scholar
  72. Stahnke, R., Schüler, S., & Rösken-Winter, B. (2016). Teachers’ perception, interpretation, and decision-making: a systematic review of empirical mathematics education research. ZDM The International Journal on Mathematics Education, 48, 1–27.  https://doi.org/10.1007/s11858-016-0775-y.CrossRefGoogle Scholar
  73. Sternberg, R. J. (2004). Handbook of intelligence. Cambridge: Cambridge University Press.Google Scholar
  74. Strauss, S. (2005). Teaching as a natural cognitive ability: implications for classroom practice and teacher education. In D. Pillemer & S. White (Eds.), Developmental psychology and social change (pp. 368–388). New York: Cambridge University Press.Google Scholar
  75. Taub, G. E., Benson, N., & Szente, J. (2014). Improving mathematics: an examination of the effects of specific cognitive abilities on college students’ mathematics achievement. International Journal of the Scholarship of Teaching and Learning.  https://doi.org/10.20429/ijsotl.2014.080208.CrossRefGoogle Scholar
  76. Thiel, O., & Jenßen, L. (2018). Affective-motivational aspects of early childhood teacher’ students knowledge about mathematics. European Early Childhood Education Research Journal, 26(4), 512–534.Google Scholar
  77. Thorndike, E. L. (1921). Intelligence and its measurement: a symposium. Journal of Educational Psychology, 12(3), 124–127.  https://doi.org/10.1037/h0064596.CrossRefGoogle Scholar
  78. Thorsen, C., Gustafsson, J.-E., & Cliffordson, C. (2014). The influence of fluid and crystallized intelligence on the development of knowledge and skills. British Journal of Educational Psychology, 84, 556–570.Google Scholar
  79. Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.Google Scholar
  80. Tirosh, D., Tsamir, P., Levenson, E., & Tabach, M. (2011). From preschool teachers’ professional development to children’s knowledge: comparing sets. Journal of Mathematics Teacher Education, 14, 113–131.  https://doi.org/10.1007/s10857-011-9172-1.CrossRefGoogle Scholar
  81. Tsamir, P., Tirosh, D., Levenson, E. S., & Barkai, R. (2018). Early childhood teachers’ knowledge and self-efficacy for evaluating solutions to repeating pattern tasks. In I. Elia, J. Mulligan, A. Anderson, A. Baccaglini-Frank, & C. Benz (Eds.), Contemporary research and perspectives on early childhood mathematics education (pp. 291–310). Cham: Springer.Google Scholar
  82. Weinert, F. E. (2001). Concept of competence: a conceptual classification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies. Göttingen: Hogrefe.Google Scholar
  83. Ziegler, M., Danay, E., Heene, M., Asendorpf, J., & Bühner, M. (2012). Openness, fluid intelligence, and crystallized intelligence: toward an integrative model. Journal of Research in Personality, 46, 173–183.  https://doi.org/10.1016/j.jrp.2012.01.002.CrossRefGoogle Scholar
  84. Zlatkin-Troitschanskaia, O., Shavelson, R., & Kuhn, C. (2015). The international state of research on measurement of competency in higher education. Studies in Higher Education, 40(3), 393–411.  https://doi.org/10.1080/03075079.2015.1004241.CrossRefGoogle Scholar

Copyright information

© The Editors of the Journal 2019

Authors and Affiliations

  • Lars Jenßen
    • 1
    Email author
  • Simone Dunekacke
    • 2
  • Jan-Eric Gustafsson
    • 3
  • Sigrid Blömeke
    • 4
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Leibniz-Institut für die Pädagogik der Naturwissenschaften und MathematikKielGermany
  3. 3.University of GothenburgGöteborgSweden
  4. 4.Centre for Educational MeasurementUniversity of Oslo (CEMO)OsloNorway

Personalised recommendations