Advertisement

Zeitschrift für Erziehungswissenschaft

, Volume 22, Issue 5, pp 1099–1119 | Cite as

Belonging uncertainty as predictor of dropout intentions among first-semester students of the computer sciences

  • Elisabeth HöhneEmail author
  • Lysann Zander
Schwerpunkt
  • 111 Downloads

Abstract

With the fast-growing sector of information technology in digitizing societies, the attraction and education of qualified recruits in computer science becomes a key task of tertiary education. Considering the high dropout rates and the continuing gender gap in computer science, the current study builds on the “leaky pipeline” phenomenon of women in STEM (science, technology, engineering, and mathematics) by investigating belonging uncertainty in computer science as a predictor of students’ dropout intentions. In a study with first-semester computer science students (N = 217) at two time points, we tested the hypotheses that female students experience a greater belonging uncertainty than male students and that this belonging uncertainty is predictive of students’ dropout intentions. Furthermore, we explored whether belonging uncertainty is a more relevant predictor of female than male students’ intentions to drop out of computer science. In line with our predictions, our results show that female students experienced greater uncertainty about their belonging within the domain of computer science than male students and that belonging uncertainty significantly predicted students’ dropout intentions above and beyond the pertinent predictors academic self-efficacy, expectancy of success, perceived future utility value of the subject, and previous academic performance. Belonging uncertainty, however, was a relevant predictor of both female and male computer science students’ dropout intentions.

Keywords

Belonging uncertainty Computer Science Dropout Gender STEM 

Die Unsicherheit über die Zugehörigkeit zum Studienfach Informatik als Prädiktor der Studienabbruchsintention von Studienanfängerinnen und Studienanfängern

Zusammenfassung

Der Rekrutierung und Ausbildung qualifizierten Nachwuchses in der Informatik kommt vor dem Hintergrund des rasant wachsenden Sektors der Informationstechnologie eine besondere Bedeutung innerhalb der tertiären Bildung zu. Angesichts der hohen Abbruchquoten und fortwährender Geschlechterunterschiede in der Informatik knüpft die vorliegende Studie an das Phänomen der „Leaky Pipeline“ von Frauen in MINT-Fächern (Mathematik, Informatik, Naturwissenschaft, Technik) an und untersucht, welchen Einfluss die Unsicherheit über die Zugehörigkeit zum Studienfach Informatik auf die Studienabbruchsintention hat. In einer Studie mit Erstsemesterstudierenden (N = 217) zu zwei Messzeitpunkten wurden entsprechend die Hypothesen getestet, dass weibliche Studierende eine größere Unsicherheit bezogen auf ihre Zugehörigkeit erleben als männliche Studierende und dass diese Zugehörigkeitsunsicherheit prädiktiv für die Studienabbruchsintention ist. Des Weiteren wurde exploriert, ob die Unsicherheit über die Zugehörigkeit ein stärkerer Prädiktor für die Studienabbruchsintention weiblicher Studierender ist. Die Ergebnisse zeigen erwartungskonform, dass weibliche Studierende eine stärkere Unsicherheit bezüglich ihrer Zugehörigkeit zum Studienfach Informatik erlebten als männliche Studierende und dass diese über die pertinenten Prädiktoren akademische Selbstwirksamkeit, subjektive Erfolgserwartung, wahrgenommene zukünftige Nützlichkeit des Studienfaches und schulische Leistung hinweg signifikante Vorhersagekraft besaß. Die Zugehörigkeitsunsicherheit war hierbei jedoch sowohl für weibliche als auch für männliche Informatikstudierende relevanter Prädiktor der Studienabbruchintention.

Schlüsselwörter

Zugehörigkeitsunsicherheit Informatik Studienabbruch Geschlecht MINT 

References

  1. Abrams, D., Thomas, J., & Hogg, M. A. (1990). Numerical distinctiveness, social identity and gender salience. British Journal of Social Psychology, 29, 87–92.  https://doi.org/10.1111/j.2044-8309.1990.tb00889.x.CrossRefGoogle Scholar
  2. Bandura, A. (1997). Self-efficacy: the exercise of control. New York: W. H. Freeman.Google Scholar
  3. Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing data analyses. Journal of School Psychology, 48, 5–37.  https://doi.org/10.1016/j.jsp.2009.10.001.CrossRefGoogle Scholar
  4. Baumeister, R. F., & Leary, M. R. (1995). The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497–529.  https://doi.org/10.1037/0022-3514.76.3.420.CrossRefGoogle Scholar
  5. Berryman, S. E. (1983). Who will do science? Trends, and their causes in minority and female representation among holders of advanced degrees in science and mathematics. A special report. New York: Rockefeller Foundation.Google Scholar
  6. Beyer, S., Rynes, K., Perrault, J., Hay, K., & Haller, S. (2003). Gender differences in computer science students. ACM SIGCSE Bulletin, 35(1), 49–53.  https://doi.org/10.1145/611892.611930.CrossRefGoogle Scholar
  7. Braxton, J. M. (2000). Reworking the student departure puzzle. Nashville: Vanderbilt University Press.Google Scholar
  8. Chemers, M. M., Hu, L., & Garcia, B. F. (2001). Academic self-efficacy and first-year college student performance and adjustment. Journal of Educational Psychology, 93(1), 55–64.  https://doi.org/10.1037/0022-0663.93.1.55.CrossRefGoogle Scholar
  9. Cheryan, S., & Plaut, V. C. (2010). Explaining underrepresentation: a theory of precluded interest. Sex Roles, 63, 475–488.  https://doi.org/10.1007/s11199-010-9835-x.CrossRefGoogle Scholar
  10. Cheryan, S., Master, A., & Meltzoff, A. N. (2015). Cultural stereotypes as gatekeepers: increasing girls’ interest in computer science and engineering by diversifying stereotypes. Frontiers in Psychology, 6, 1–8.  https://doi.org/10.3389/fpsyg.2015.00049.CrossRefGoogle Scholar
  11. Cheryan, S., Plaut, V. C., Davies, P. G., & Steele, C. M. (2009). Ambient belonging: how stereotypical cues impact gender participation in computer science. Journal of Personality and Social Psychology, 97(6), 1045–1060.  https://doi.org/10.1037/a0016239.CrossRefGoogle Scholar
  12. Cheryan, S., Plaut, V. C., Handron, C., & Hudson, L. (2013). The stereotypical computer scientist: gendered media representations as a barrier to inclusion for women. Sex Roles, 69, 58–71.  https://doi.org/10.1007/s11199-013-0296-x.CrossRefGoogle Scholar
  13. Cohen, J. E. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd edn.). Hillsdale: Lawrence Erlbaum Associated.Google Scholar
  14. Croizet, J.-C., & Claire, T. (1998). Extending the concept of stereotype threat to social class: the intellectual underperformance of students from low socioeconomic backgrounds. Personality and Social Psychology Bulletin, 24(6), 588–594.  https://doi.org/10.1177/0146167298246003.CrossRefGoogle Scholar
  15. Cundiff, J. L., Vescio, T. K., Loken, E., & Lo, L. (2013). Do gender-science stereotypes predict science identification and science career aspirations among undergraduate science majors? Social Psychology of Education, 16(4), 541–554.  https://doi.org/10.1007/s11218-013-9232-8.CrossRefGoogle Scholar
  16. Davies, P. G., Spencer, S. J., Quinn, D. M., & Gerhardstein, R. (2002). Consuming images: how television commercials that elicit stereotype threat can restrain women academically and professionally. Personality and Social Psychology Bulletin, 28(12), 1615–1628.  https://doi.org/10.1177/014616702237644.CrossRefGoogle Scholar
  17. Deemer, E. D., Lin, C., & Soto, C. (2016). Stereotype threat and women’s science motivation: examining the disidentification effect. Journal of Career Assessment, 24(4), 637–650.  https://doi.org/10.1177/1069072715616064.CrossRefGoogle Scholar
  18. Diekman, A. B., Brown, E. R., Johnston, A. M., & Clark, E. K. (2010). Seeking congruity between goals and roles: a new look at why women opt out of science, technology, engineering and mathematics careers. Psychological Science, 21(8), 1051–1057.  https://doi.org/10.1177/0956797610377342.CrossRefGoogle Scholar
  19. Eccles (Parsons), J. S., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley, C. (1983). Expectancies, values, and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motivation (pp. 75–146). San Francisco: W.H. Freeman.Google Scholar
  20. Eccles, J. S., Wigfield, A., Harold, R. D., & Blumenfeld, P. (1993). Age and gender differences in children’s self- and task perceptions during elementary school. Child Development, 64, 830–847.  https://doi.org/10.2307/1131221.CrossRefGoogle Scholar
  21. Ehrlinger, J., & Dunning, D. (2003). How chronic self-views influence (and potentially mislead) estimates of performance. Journal of Personality and Social Psychology, 8(1), 5–17.  https://doi.org/10.1037/0022-3514.84.1.5.CrossRefGoogle Scholar
  22. Else-Quest, N. M., Mineo, C. C., & Higgins, A. (2013). Math and science attitudes and achievement at the intersection of gender and ethnicity. Psychology of Women Quarterly, 37(3), 293–309.  https://doi.org/10.1177/0361684313480694.CrossRefGoogle Scholar
  23. European Commission (2018). Digital skills & jobs. https://ec.europa.eu/digital-single-market/en/policies/digital-skills. Accessed: 22. Dec. 2018.
  24. European Institute for Gender Equality (2017). Gender segregation in education, training and the labour market. Brussels: Council of the European Union.Google Scholar
  25. Federal Statistical Office of Germany (2016). Schulen auf einen Blick [Schools at a glance]. Wiesbaden: DeStatis.Google Scholar
  26. Federal Statistical Office of Germany (2017). Bildung und Kultur. Schnellmeldungsergebnisse der Hochschulstatistik zu Studierenden und Studienanfänger/-innen – vorläufige Ergebnisse – Wintersemester 2017/2018. Wiesbaden: DeStatis.Google Scholar
  27. Federal Statistical Office of Germany (2018). Bildung und Kultur. Studierende an Hochschulen – Wintersemester 2017/2018. Wiesbaden: DeStatis.Google Scholar
  28. Federal Statistical Office of Germany (2019). Bildung und Kultur. Erfolgsquoten. Wiesbaden: DeStatis.Google Scholar
  29. Gaspard, H., Dicke, A.-L., Flunger, B., Schreier, B., Häfner, I., Trautwein, U., & Nagengast, B. (2015). More value through greater differentiation: gender differences in value beliefs about math. Journal of Educational Psychology, 107(3), 663–677.  https://doi.org/10.1037/edu0000003.CrossRefGoogle Scholar
  30. Good, C., Aronson, J., & Harder, J. A. (2008). Problems in the pipeline: stereotype threat and women’s achievement in high-level math courses. Journal of Applied Developmental Psychology, 29, 17–28.  https://doi.org/10.1016/j.appdev.2007.10.004.CrossRefGoogle Scholar
  31. Good, C., Rattan, A., & Dweck, C. S. (2012). Why do women opt out? Sense of belonging and women’s representation in mathematics. Journal of Personality and Social Psychology, 102(4), 700–717.  https://doi.org/10.1037/a0026659.CrossRefGoogle Scholar
  32. Hackett, G., & Betz, N. E. (1981). A self-efficacy approach to the career development of women. Journal of Vocational Behaviour, 18, 326–339.  https://doi.org/10.1016/0001-8791(81)90019-1.CrossRefGoogle Scholar
  33. Hannover, B., & Kessels, U. (2004). Self-to-prototype matching as a strategy for making academic choices. Why high school students do not like math and science. Learning and Instruction, 14, 51–67.  https://doi.org/10.1016/j.learninstruc.2003.10.002.CrossRefGoogle Scholar
  34. Hess, T. M., Auman, C., Colcombe, S. J., & Rahhal, T. A. (2003). The impact of stereotype threat on age differences in memory performance. The Journals of Gerontology: Series B, 58(1), 3–11.  https://doi.org/10.1093/geronb/58.1.P3.CrossRefGoogle Scholar
  35. Heublein, U., & Schmelzer, R. (2018). Die Entwicklung der Studienabbruchquoten an den deutschen Hochschulen. Hannover: Deutsches Zentrum für Hochschul- und Wissenschaftsforschung.Google Scholar
  36. Hill, C., Corbett, C., & Rose, S. A. (2010). Why so few? Women in science, technology, engineering, and mathematics. Washington, D.C.: American Association of University Women.Google Scholar
  37. Höhne, E., & Zander, L. (2019). Sources of male and female students’ belonging uncertainty in the computer sciences. Frontiers in Psychology, 10, 1740.  https://doi.org/10.3389/fpsyg.2019.01740.CrossRefGoogle Scholar
  38. Hox, J. J., van Buuren, S., & Jolani, S. (2015). Incomplete multilevel data: problems and solutions. In J. R. Harring, L. M. Stapleton & S. N. Beretvas (Eds.), Advances in multilevel modeling for educational research: addressing practical issues found in real-world applications (pp. 39–62). Charlotte: Information Age Publishing Inc.Google Scholar
  39. Hox, J. J., Moerbeek, M., Kluytmans, A., & van de Schoot, R. (2014). Analyzing indirect effects in cluster randomized trials. The effect of estimation method, number of groups and group sizes on accuracy and power. Frontiers in Psychology, 5, 78.  https://doi.org/10.3389/fpsyg.2014.00078.CrossRefGoogle Scholar
  40. Huang, C. (2013). Gender differences in academic self-efficacy: a meta-analysis. European Journal of Psychology of Education, 28(1), 1–35.  https://doi.org/10.1007/s10212-011-0097-y.CrossRefGoogle Scholar
  41. Hughes, J. N., Im, M. H., & Allee, P. J. (2015). Effect of school belonging trajectories in grades 6–8 on achievement: gender and ethnic differences. Journal of School Psychology, 53(6), 493–507.  https://doi.org/10.1016/j.jsp.2015.08.001.CrossRefGoogle Scholar
  42. Hulleman, C. S., & Harackiewicz, J. M. (2009). Promoting interest and performance in high school science classes. Science, 326, 1410–1412.  https://doi.org/10.1126/science.1177067.CrossRefGoogle Scholar
  43. Hurtado, S., & Carter, D. F. (1997). Effects of college transition and perceptions of the campus racial climate on latino college students’ sense of belonging. Sociology of Education, 70(4), 324–345.  https://doi.org/10.2307/2673270.CrossRefGoogle Scholar
  44. Ihsen, S., Höhle, E. A., & Baldin, D. (2013). Spurensuche!: Entscheidungskriterien für Natur- bzw. Ingenieurwissenschaften und mögliche Ursachen für frühe Studienabbrüche von Frauen und Männern an den TU9-Universitäten. Münster: LIT.Google Scholar
  45. Inzlicht, M., & Ben-Zeev, T. (2000). A threatening intellectual environment: why females are susceptible to experiencing problem-solving deficits in the presence of males. Psychological Science, 11(5), 365–371.  https://doi.org/10.1111/1467-9280.00272.CrossRefGoogle Scholar
  46. Jerusalem, M., & Schwarzer, R. (1986). Selbstwirksamkeit. In R. Schwarzer (Ed.), Skalen zur Befindlichkeit und zur Persönlichkeit. (pp. 15–28). Berlin: Zentrale Universitäts-Druckerei.Google Scholar
  47. Johns, M., Schmader, T., & Martens, A. (2005). Knowing is half the battle. Teaching stereotype threat as a means of improving women’s math performance. Psychological Science, 16(3), 175–179.  https://doi.org/10.1111/j.0956-7976.2005.00799.x.CrossRefGoogle Scholar
  48. Jones, B. D., Paretti, M. C., Hein, S. F., & Knott, T. W. (2010). An analysis of motivation constructs with first-year engineering students: relationships among expectancies, values, achievement, and career plans. Journal of Engineering Education, 99(4), 319–336.  https://doi.org/10.1002/j.2168-9830.2010.tb01066.x.CrossRefGoogle Scholar
  49. Johnson, D. R., Soldner, M., Leonard, J. B., Alvarez, P., Inkelas, K. K., Rowan-Kenyon, H., & Longerbeam, S. (2007). Examining sense of belonging among first-year undergraduates from different racial/ ethnic groups. Journal of College Student Development, 48(5), 525–542.  https://doi.org/10.1351/csd.2007.0054.CrossRefGoogle Scholar
  50. Klöpping, S., Scherfer, M., Gokus, S., Dachsberger, S., Krieg, A., Wolter, A., Bruder, R., Ressel, W., & Umbach, E. (2017). Studienabbruch in den Ingenieurwissenschaften. Empirische Analyse und Best Practices zum Studienerfolg (acatech STUDIE). München: Herbert Utz Verlag.Google Scholar
  51. Lewis, K. L., Stout, J. G., Finkelstein, N. D., Pollock, S. J., Miyake, A., Cohen, G. L., & Ito, T. A. (2017). Fitting in to move forward: belonging, gender, and persistence in the physical sciences, technology, engineering, and mathematics (pSTEM). Psychology of Women Quarterly, 41, 420–436.  https://doi.org/10.1177/0361684317720186.CrossRefGoogle Scholar
  52. Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83, 1198–1202.  https://doi.org/10.1080/01621459.1988.10478722.CrossRefGoogle Scholar
  53. Little, R. J. A., & Rubin, D. B. (1989). The analysis of social science data with missing values. Sociological Methods and Research, 18(2–3), 292–326.  https://doi.org/10.1177/0049124189018002004.CrossRefGoogle Scholar
  54. Master, A., Cheryan, S., & Meltzoff, A. N. (2016). Computing whether she belongs: stereotypes undermine girls’ interest and sense of belonging in computer science. Journal of Educational Psychology, 108(3), 424–437.  https://doi.org/10.1037/edu0000061.CrossRefGoogle Scholar
  55. McGuire, W. J., McGuire, C. V., & Winton, W. (1979). Effects of household sex composition on the salience of one’s gender in the spontaneous self-concept. Journal of Experimental Social Psychology, 15, 77–90.  https://doi.org/10.1016/0022-1031(79)90020-9.CrossRefGoogle Scholar
  56. Mercier, E. M., Barron, B., & O’Connor, K. M. (2006). Images of self and others as computer users: the role of gender and experience. Journal of Computer Assisted Learning, 22, 335–348.  https://doi.org/10.1111/j.1365-2729.2006.00182.x.CrossRefGoogle Scholar
  57. Morgan, S. L., Gelbgiser, D., & Weeden, K. A. (2013). Feeding the pipeline: gender, occupational plans, and college major selection. Social Science Research, 42, 989–1005.  https://doi.org/10.1016/j.ssresearch.2013.03.008.CrossRefGoogle Scholar
  58. Murphy, M. C., & Taylor, V. J. (2012). The role of situational cues in signaling and maintaining stereotype threat. In I. M. Inzlicht & T. Schmader (Eds.), Stereotype threat: theory, process, application (pp. 17–33). New York: Oxford University Press.Google Scholar
  59. Murphy, M. C., & Zirkel, S. (2015). Race and belonging in school: how anticipated and experienced belonging affect choice, persistence, and performance. Teachers College Record, 117, 1–40.Google Scholar
  60. Murphy, M. C., Steele, C. M., & Gross, J. J. (2007). Signaling threat. How situational cues affect women in math, science, and engineering settings. Psychological Science, 18(10), 879–885.  https://doi.org/10.1111/j.1467-9280.2007.01995.x.CrossRefGoogle Scholar
  61. Muthén, L. K., & Muthén, B. O. (2017). Mplus User’s Guide (8th edn.). Los Angeles: Muthén & Muthén.Google Scholar
  62. OECD (2017). Bildung auf einen Blick 2017: OECD-Indikatoren. Bielefeld: wbv.CrossRefGoogle Scholar
  63. Perez, T., Cromley, J. G., & Kaplan, A. (2014). The role of identity development, values, and costs in college STEM retention. Journal of Educational Psychology, 106(1), 315–329.  https://doi.org/10.1037/a0034027.CrossRefGoogle Scholar
  64. Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: a review of reporting practices and suggestions for improvement. Review of Educational Research, 74(4), 525–556.  https://doi.org/10.3102/00346543074004525.CrossRefGoogle Scholar
  65. Robbins, S. B., Lauver, K., Le, H., Davis, D., & Langley, R. (2004). Do psychosocial and study skill factors predict college outcome? A meta-analysis. Psychological Bulletin, 130(2), 261–288.  https://doi.org/10.1037/0033-2909.130.2.261.CrossRefGoogle Scholar
  66. Rommes, E., Overbeek, G., Scholte, R., Engels, R., & De Kemp, R. (2007). ‘I’M NOT INTERESTED IN COMPUTER’: Gender-based occupational choices of adolescents. Information, Communication & Society, 10(3), 299–319.  https://doi.org/10.1080/13691180701409838.CrossRefGoogle Scholar
  67. Sadler, P. M., Sonnert, G., Hazari, Z., & Tai, R. (2012). Stability and volatility of STEM career interest in high school: a gender study. Science Education, 96(3), 411–427.  https://doi.org/10.1002/sce.21007.CrossRefGoogle Scholar
  68. Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological Methods, 7(2), 147–177.  https://doi.org/10.1037/1082-989X.7.2.147.CrossRefGoogle Scholar
  69. Schott, G., & Selwyn, N. (2000). Examining the “male, antisocial” stereotype of high computer users. Journal of Educational Computing Research, 23(3), 291–303.  https://doi.org/10.2190/V98R-5ETX-W9LY-WD3J.CrossRefGoogle Scholar
  70. Smith, J. L., Lewis, K. L., Hawthorne, L., & Hodges, S. D. (2013). When trying hard isn’t natural: women’s belonging with and motivation for male-dominated STEM fields as a function of effort expenditure concerns. Personality and Social Psychology Bulletin, 39(2), 131–143.  https://doi.org/10.1177/0146167212468332.CrossRefGoogle Scholar
  71. Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35, 4–28.  https://doi.org/10.1006/jesp.1998.1373.CrossRefGoogle Scholar
  72. Steele, C. M. (1997). A threat in the air. How stereotypes shape intellectual identity and performance. American Psychologist, 52(6), 613–629.  https://doi.org/10.1037/0003-066X.52.6.613.CrossRefGoogle Scholar
  73. Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African Americans. Journal of Personality and Social Psychology, 69(5), 797–811.  https://doi.org/10.1037/0022-3514.69.5.797.CrossRefGoogle Scholar
  74. Steele, J. R., & Ambady, N. (2006). “Math is Hard!” The effect of gender priming on women’s attitudes. Journal of Experimental Social Psychology, 42, 428–436.  https://doi.org/10.1016/j.jesp.2005.06.003.CrossRefGoogle Scholar
  75. Stone, J., Lynch, C. I., Sjomeling, M., & Darley, J. M. (1999). Stereotype threat effects on black and white athletic performance. Journal of Personality and Social Psychology, 77(6), 1213–1227.  https://doi.org/10.1037/0022-3514.77.6.1213.CrossRefGoogle Scholar
  76. Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. A. (2011). STEMing the tide: using ingroup experts to inoculate women’s self-concept in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 100(2), 255–270.  https://doi.org/10.1037/a0021385.CrossRefGoogle Scholar
  77. Tajfel, H., & Turner, J. C. (1986). The social identity theory of intergroup behaviour. In S. Worchel & L. W. Austin (Eds.), Psychology of intergroup relations (pp. 7–24). Chicago: Nelson Hall.Google Scholar
  78. Tierney, W. G. (1992). An anthropological analysis of student participation in college. The Journal of Higher Education, 63(6), 603–618.  https://doi.org/10.1080/00221546.1992.11778391.CrossRefGoogle Scholar
  79. Tinto, V. (1975). Dropout from higher education: a theoretical synthesis of recent research. Review of Educational Research, 45(1), 89–125.  https://doi.org/10.3102/00346543045001089.CrossRefGoogle Scholar
  80. Turner, J. C., & Oakes, P. J. (1986). The significance of the social identity concept for social psychology with reference to individualism, interactionism and social influence. British Journal of Social Psychology, 25, 237–252.  https://doi.org/10.1111/j.2044-8309.1986.tb00732.x.CrossRefGoogle Scholar
  81. Walton, G. M., & Carr, P. B. (2012). Social belonging and the motivation and intellectual achievement of negatively stereotyped students. In M. Inzlicht & T. Schmader (Eds.), Stereotype threat: theory, process, application (pp. 89–106). New York: Oxford University Press.Google Scholar
  82. Walton, G. M., & Cohen, G. L. (2007). A question of belonging: race, social fit, and achievement. Journal of Personality and Social Psychology, 92(1), 82–96.  https://doi.org/10.1037/0022-3514.92.1.82.CrossRefGoogle Scholar
  83. Walton, G. M., & Cohen, G. L. (2011). A brief social-belonging intervention improves academic and health outcomes of minority students. Science, 331, 1447–1451.  https://doi.org/10.1126/science.1198364.CrossRefGoogle Scholar
  84. Walton, G. M., & Spencer, S. J. (2009). Latent ability. Grades and test scores systematically underestimate the intellectual ability of negatively stereotyped students. Psychological Science, 20(9), 1132–1139.  https://doi.org/10.1111/j.1467-9280.2009.02417.x.CrossRefGoogle Scholar
  85. Walton, G. M., Cohen, G. L., Cwir, D., & Spencer, S. J. (2012). Mere belonging: the power of social connectedness. Journal of Personality and Social Psychology, 102(3), 513–532.  https://doi.org/10.1037/a0025731.CrossRefGoogle Scholar
  86. Walton, G. M., Logel, C., Peach, J. M., Spencer, S. J., & Zanna, M. P. (2015). Two brief interventions to mitigate a “chilly climate” transform women’s experience, relationships, and achievement in engineering. Journal of Educational Psychology, 107(2), 468–485.  https://doi.org/10.1037/a0037461.CrossRefGoogle Scholar
  87. Watt, H. M. G. (2004). Development of adolescents’ self-perceptions, values, and task perceptions according to gender and domain in 7th- through 11th-grade Australian students. Child Development, 75(5), 1556–1574.  https://doi.org/10.1111/j.1467-8624.2004.00757.x.CrossRefGoogle Scholar
  88. Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25, 68–81.  https://doi.org/10.1006/ceps.1999.1015.CrossRefGoogle Scholar
  89. Wolf-Wendel, L., Ward, K., & Kinzie, J. (2009). A tangled web of terms: the overlap and unique contribution of involvement, engagement, and integration to understanding college student success. Journal of College Student Development, 50(4), 407–428.  https://doi.org/10.1353/csd.0.0077.CrossRefGoogle Scholar
  90. Woodcock, A., Hernandez, P. R., Estrada, M., & Schultz, P. W. (2013). The consequences of chronic stereotype threat: domain disidentification and abandonment. Journal of Personality and Social Psychology, 103(4), 635–646.  https://doi.org/10.1037/a0029120.CrossRefGoogle Scholar
  91. Xu, Y. J., & Webber, K. L. (2018). College student retention on a racially diverse campus: a theoretically guided reality check. Journal of College Student Retention: Research, Theory & Practice, 20(1), 2–28.  https://doi.org/10.1177/1521025116643325.CrossRefGoogle Scholar

Copyright information

© The Editors of the Journal 2019

Authors and Affiliations

  1. 1.Division of Empirical Educational Research, Institute of EducationLeibniz Universität HannoverHannoverGermany

Personalised recommendations