Advertisement

Diversity of functional illiterate cases: Results from a multiple-single case study

  • Réka VágvölgyiEmail author
  • Luise Marie Rohland
  • Moritz Sahlender
  • Thomas Dresler
  • Josef Schrader
  • Hans-Christoph Nuerk
Schwerpunkt

Abstract

Functional illiteracy characterizes people who, despite formal education, do not possess the basic literacy skills to deal with everyday life requirements. Although a few studies have shown the heterogeneity of functional illiteracy, empirical research to differentiate these people at the individual level of more basic skills is lacking. The goal of this study is to assess the linguistic, cognitive, and numerical skills of functional illiterates: first, by comparing cases to each other; second, by comparing them to a literate control group across these domains. For this purpose, a multiple single-case methodology commonly used in neuropsychological case studies was employed, in the field of educational research. The results revealed heterogeneity in one of the literacy tests (leo.), in lexical access, in auditory story comprehension, and in spatial representation of numbers, while the pattern of results indicated more homogeneity in the other literacy test (ELFE 1-6), in non-verbal IQ, in phonological processing, in auditory grammatical comprehension, in arithmetic, in magnitude processing, and in place-value integration. Moreover, the multiple case design showed that the presented functionally illiterates perform significantly worse than the literate group on most of the measures. Further research should consider using differential diagnostics of literacy, linguistic and numerical abilities.

Keywords

Adult education Functional illiteracy Linguistic skills Mathematical skills Single case methodology 

Diversität funktionaler Analphabeten: Ergebnisse einer multiplen Fallstudie

Zusammenfassung

Funktionale Analphabeten gelten als eine heterogene Gruppe von Personen, deren Lese- und Schreibfähigkeiten trotz Schulbildung für alltägliche Anforderungen nicht ausreichen. Eine empirisch fundierte Differenzierung auf Basis grundlegender Kompetenzen existiert bisher nicht. Um die linguistischen, kognitiven und numerischen Kompetenzen funktionaler Analphabeten zu untersuchen, wurde eine multiple Fallstudie durchgeführt. Dafür wurden funktional analphabetische Personen miteinander, sowie mit einer Stichprobe literalisierter Personen verglichen. Die Ergebnisse zeigen Heterogenität in einem der Alphabetisierungstests (leo.), im lexikalischen Zugriff und in der räumlichen Zahlenrepräsentation. Homogenere Muster wurden bezüglich des anderen Alphabetisierungstest (ELFE 1-6), des nonverbalen IQ, der phonologischen Verarbeitung, des grammatikalischen Hörverständnis, der Arithmetik, der Größenverarbeitung und der Stellenwertsintegration gefunden. Funktionale Analphabeten schnitten auf den meisten Skalen schlechter ab als die literalisierte Gruppe. Zukünftige Forschung sollte die differenzielle Diagnostik von Literalität, sprachlichen und numerischen Kompetenzen berücksichtigen.

Schlüsselwörter

Einzelfallstudie Erwachsenenbildung Funktionaler Analphabetismus Linguistische Kompetenzen Mathematische Kompetenzen 

Notes

Acknowledgements

We would like to thank Bruno Fimm for providing us with the Go/NoGo task of the TAP 2.3 and Urszula Mihulowicz for her help with analyzing the data. Finally, we thank Julianne Skinner and Zoë-Lauren Kirste for the proofreading of the manuscript.

Funding

This research (“Basic Foundations of Functional Illiteracy”) is funded by the LEAD Graduate School & Research Network [GSC1028], a project of the Excellence Initiative of the German federal and state governments and by the German Institute for Adult Education—Leibniz Centre for Lifelong Learning e. V.

References

  1. Altemeier, L. E., Abbott, R. D., & Berninger, V. W. (2008). Executive functions for reading and writing in typical literacy development and dyslexia. Journal of Clinical and Experimental Neuropsychology, 30(5), 588–606.  https://doi.org/10.1080/13803390701562818.Google Scholar
  2. BMAS – Bundesministerium für Arbeit und Soziales. (2014). Leichte Sprache – Ein Ratgeber. http://www.bmas.de/DE/Service/Medien/Publikationen/a752-leichte-sprache-ratgeber.html. Accessed: 17. Dec. 2018.Google Scholar
  3. Boets, B., & De Smedt, B. (2010). Single-digit arithmetic in children with dyslexia. Dyslexia, 16, 183–191.Google Scholar
  4. Crawford, J. R., & Garthwaite, P. H. (2002). Investigation of the single case in neuropsychology: confidence limits on the abnormality of test scores and test score differences. Neuropsychologia, 40, 1196–1208.Google Scholar
  5. Crawford, J. R., & Howell, D. C. (1998). Comparing an individual’s test score against norms derived from small samples. The Clinical Neuropsychologist, 12(4), 482-486.Google Scholar
  6. Crawford, J. R., Garthwaite, P. H., & Wood, L. T. (2011). Inferential methods for comparing two single cases. Cognitive Neuropsychology, 27(5), 377–400.Google Scholar
  7. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.Google Scholar
  8. Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219–250.Google Scholar
  9. Döbert, M., & Hubertus, P. (2000). Ihr Kreuz ist die Schrift. Analphabetismus und Alphabetisierung in Deutschland. Münster: Bundesverband Alphabetisierung.Google Scholar
  10. Egloff, B., Grosche, M., Hubertus, P., & Rüsseler, J. (2011). Funktionaler Analphabetismus im Erwachsenenalter: eine Definition. In Projektträger im Deutschen Zentrum für Luft- und Raumfahrt e.V. (ed.), Zielgruppen in Alphabetisierung und Grundbildung Erwachsener: Bestimmung, Verortung, Ansprache (pp. 11–31). Bielefeld: wbv.Google Scholar
  11. Eme, E. (2006). L’examen psycholinguistique et neuropsychologique de personnes en situation d’illettrisme. Revue de Neuropsychologie, 16, 3–40.Google Scholar
  12. Eme, E. (2011). Cognitive and psycholinguistic skills of adults who are functionally illiterate: current state of research and implications for adult education. Applied Cognitive Psychology, 25(5), 753–762.  https://doi.org/10.1002/acp.1746 .Google Scholar
  13. Eme, E., Lacroix, A., & Almecija, Y. (2010). Oral narrative skills in French adults who are functionally illiterate: linguistic features and discourse organization. Journal of Speech Language and Hearing Research, 53(5), 1349.  https://doi.org/10.1044/1092-4388(2010/08-0092).Google Scholar
  14. Eme, E., Lambert, E., & Alamargot, D. (2014). Word reading and word spelling in French adult literacy students: the relationship with oral language skills. Journal of Research in Reading, 37(3), 268–296.  https://doi.org/10.1111/j.1467-9817.2011.01508.x .Google Scholar
  15. Greenberg, D., Ehri, L. C., & Perin, D. (1997). Are word-reading processes the same or different in adult literacy students and third-fifth graders matched for reading level? Journal of Educational Psychology, 89(2), 262–275.  https://doi.org/10.1037/0022-0663.89.2.262 .Google Scholar
  16. Greenberg, D., Ehri, L. C., & Perin, D. (2002). Do adult literacy students make the same word-reading and spelling errors as children matched for word-reading age? Scientific Studies of Reading, 6(3), 221–243.Google Scholar
  17. Grosche, M. (2012). Analphabetismus und Lese-Rechtschreib-Schwächen. Münster: Waxmann.Google Scholar
  18. Grotlüschen, A., & Riekmann, W. (2012). Funktionaler Analphabetismus in Deutschland – Ergebnisse der ersten leo. – Level-One Studie. Münster: Waxmann.Google Scholar
  19. Huber, S., Mann, A., Nuerk, H. C., & Moeller, K. (2014a). Cognitive control in number magnitude processing: evidence from eye-tracking. Psychological Research, 78(4), 539–548.  https://doi.org/10.1007/s00426-013-0504-x.Google Scholar
  20. Huber, S., Moeller, K., & Nuerk, H.-C. (2014b). Dissociating number line estimations from underlying numerical representations. Quarterly Journal of Experimental Psychology, 67(5), 991–1003.  https://doi.org/10.1080/17470218.2013.838974.Google Scholar
  21. Imbo, I., & Vandierendonck, A. (2007). The development of strategy use in elementary school children: working memory and individual differences. Journal of Experimental Child Psychology, 96(4), 284–309.  https://doi.org/10.1016/j.jecp.2006.09.001 .Google Scholar
  22. Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010). The concurrent validity of the N‑back task as a working memory measure. Memory, 18(4), 394–412.  https://doi.org/10.1080/09658211003702171 .Google Scholar
  23. Kallai, A. Y., & Tzelgov, J. (2012). The place-value of a digit in multi-digit numbers is processed automatically. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1221–1233.Google Scholar
  24. Kaufmann, L., Mazzocco, M. M., Dowker, A., von Aster, M., Göbel, S. M., Grabner, R. H., & Nuerk, H.-C. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in Psychology, 4, 1–5.  https://doi.org/10.3389/fpsyg.2013.00516.Google Scholar
  25. Kieffer, M. J., Vukovic, R. K., & Berry, D. (2013). Roles of attention shifting and inhibitory control in fourth-grade reading comprehension. Reading Research Quarterly, 48(4), 333–348.  https://doi.org/10.1002/rrq.54.Google Scholar
  26. Knops, A., Nuerk, H.-C., Fimm, B., Vohn, R., & Willmes, K. (2006). A special role for numbers in working memory? An fMRI study. Neuroimage, 29, 1–14.Google Scholar
  27. Kreuzpointner, L., Lukesch, H., & Horn, W. (2013). LPS-2 Leistungsprüfsystem 2. Göttingen: Hogrefe.Google Scholar
  28. Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: two learning disorders with different cognitive profiles. J. Exp. Child Psychol, 103, 309–324.Google Scholar
  29. Lenhard, W., & Schneider, W. (2006). ELFE 1-6: ein Leseverständnistest für Erst- bis Sechstklässler. Göttingen: Hogrefe.Google Scholar
  30. Mann, A., Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H.-C. (2011). Attentional strategies in place-value integration. Zeitschrift Für Psychologie, 219(1), 42–49.  https://doi.org/10.1027/2151-2604/a000045.Google Scholar
  31. Moll, K., & Landerl, K. (2010). SLRT-II: Lese- und Rechtschreibtest; Weiterentwicklung des Salzburger Lese- und Rechtschreibtests (SLRT). Bern: Huber.Google Scholar
  32. Morais, J., Cary, L., Alegria, J., & Bettelson, P. (1979). Does awareness of speech as a sequence of phonemes arise spontaneously? Cognition, 19, 323–331.Google Scholar
  33. Nuerk, H.-C., Kaufmann, L., Zoppoth, S., & Willmes, K. (2004). On the development of the mental number line: more, less, or never holistic with increasing age? Developmental Psychology, 40(6), 1199–1211.  https://doi.org/10.1037/0012-1649.40.6.1199.Google Scholar
  34. Nuerk, H.-C., Klein, E., & Willmes, K. (2012). Zahlenverarbeitung und Rechnen. In F. Schneider & G. Fink (eds.), Funktionelle MRT in Psychiatrie und Neurologie (2nd edn., pp. 443–455). Heidelberg: Springer.Google Scholar
  35. Nuerk, H. C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition.  https://doi.org/10.1016/S0010-0277(01)00142-1.Google Scholar
  36. OECD (2013). OECD Skills Outlook 2013—first results from the survey of adult skills. Paris: OECD.  https://doi.org/10.1787/9789264204256-en.Google Scholar
  37. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N‑back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.  https://doi.org/10.1002/hbm.20131.Google Scholar
  38. Peirce, J. W. (2007). PsychoPy—psychophysics software in python. Journal of Neuroscience Methods, 162(1), 8–13.Google Scholar
  39. Petermann, F., & Daseking, M. (2012). Zürcher Lesetest-II (ZLT-II). Bern: Huber.Google Scholar
  40. Potocki, A., Sanchez, M., Ecalle, J., & Magnan, A. (2017). Linguistic and cognitive profiles of 8‑ to 15-year-old children with specific reading comprehension difficulties: the role of executive functions. Journal of Learning Disabilities, 50(2), 128–142.  https://doi.org/10.1177/0022219415613080.Google Scholar
  41. Rüsseler, J., Boltzmann, M., Menkhaus, K., & Aulbert-Siepelmeyer, A. (2013). Evaluation eines neuen Trainingsprogramms zur Verbesserung der Lese- und Rechtschreibfähigkeiten funktionaler Analphabeten. Empirische Sonderpädagogik, 3, 237–249.Google Scholar
  42. Rüsseler, J., Gerth, I., & Boltzmann, M. (2011). Basale Wahrnehmungsfähigkeiten von erwachsenen funktionalen Analphabeten und Analphabetinnen. In Projektträger im Deutschen Zentrum für Luft- und Raumfahrt e. V. (ed.), Lernprozesse in Alphabetisierung und Grundbildung Erwachsener. Diagnostik, Vermittlung, Professionalisierung (pp. 11–28). Bielefeld: wbv.Google Scholar
  43. Schneider, F., & Fink, G. (2012). Funktionelle MRT in Psychiatrie und Neurologie (2nd edition). Heidelberg: Springer.Google Scholar
  44. Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–243.  https://doi.org/10.1111/1467-9280.02438.Google Scholar
  45. De Smedt, B., & Boets, B. (2010). Phonological processing and arithmetic fact retrieval: evidence from developmental dyslexia. Neuropsychologia, 48(14), 3973–3981.  https://doi.org/10.1016/j.neuropsychologia.2010.10.018.Google Scholar
  46. Steinert, J. (2011). Allgemeiner Deutscher Sprachtest: ADST. Göttingen: Hogrefe.Google Scholar
  47. Thompkins, A. C., & Binder, K. S. (2003). A comparison of the factors affecting reading performance of functional illiterate adults and children matched by reading level. Reading Research Quarterly, 38, 236–258.Google Scholar
  48. UNESCO (1978). Records of the General Conference. 20th session (Vol. 1). Paris: UNESCO.Google Scholar
  49. Vágvölgyi, R., Coldea, A., Dresler, T., Schrader, J., & Nuerk, H.-C. (2016). A review about functional illiteracy: definition, cognitive, linguistic, and numerical aspects. Frontiers in Psychology, 7, 17–29.  https://doi.org/10.3389/fpsyg.2016.01617.Google Scholar
  50. WHO (2010). International classification of diseases and related health problems. ICD-10 (10th edition).Google Scholar
  51. Willmes, K. (2000). Statistische und psychometrische Aspekte der Neuropsychologie. In W. Sturm, M. Herrmann, & C.-W. Wallesch (eds.), Lehrbuch der Klinischen Neuropsychologie (pp. 229–249). Lisse: Swets & Zeitlinger.Google Scholar
  52. Wilson, A. J., Andrewes, S. G., Struthers, H., Rowe, V. M., Bogdanovic, R., & Waldie, K. E. (2015). Dyscalculia and dyslexia in adults: cognitive bases of comorbidity. Learning and Individual Differences, 37, 118–132.  https://doi.org/10.1016/j.lindif.2014.11.017.Google Scholar
  53. Wolf, M., & Bowers, P. G. (1999). The double-deficit hypothesis for the developmental dyslexia. Journal of Educational Psychology, 91(3), 415–438.Google Scholar
  54. Wood, G., Nuerk, H.-C., Freitas, P., Freitas, G., & Willmes, K. (2006). What do semi-illiterate adults know about 2‑digit Arabic numbers? Cortex, 42(1), 48–56.  https://doi.org/10.1016/S0010-9452(08)70321-6.Google Scholar
  55. Zimmermann, P., & Fimm, B. (2012). Testbatterie zur Aufmerksamkeitsprüfung – Version 2.3. Herzogenrath: Psychologische Testsysteme.Google Scholar

Copyright information

© The Editors of the Journal 2019

Authors and Affiliations

  • Réka Vágvölgyi
    • 1
    Email author
  • Luise Marie Rohland
    • 2
  • Moritz Sahlender
    • 3
  • Thomas Dresler
    • 1
    • 4
  • Josef Schrader
    • 1
    • 3
    • 5
  • Hans-Christoph Nuerk
    • 1
    • 6
    • 7
  1. 1.LEAD Graduate School & Research NetworkUniversity of TuebingenTuebingenGermany
  2. 2.Institut de PsychologieUniversité Paris DescartesBoulogne-Billancourt CedexFrance
  3. 3.German Institute for Adult Education – Leibniz Centre for Lifelong Learning (Deutsches Institut für Erwachsenenbildung – Leibniz-Zentrum für Lebenslanges Lernen e. V.)BonnGermany
  4. 4.Department of Psychiatry and PsychotherapyUniversity Hospital TuebingenTuebingenGermany
  5. 5.Department of EducationUniversity of TuebingenTuebingenGermany
  6. 6.Department of PsychologyUniversity of TuebingenTuebingenGermany
  7. 7.Leibniz-Institut für WissensmedienTuebingenGermany

Personalised recommendations