Pelvi-périnéologie

, 3:221

Les troubles vésicosphinctériens du diabète

  • J. Kerdraon
  • F. Busnel
  • P. Coignard
  • G. Le Claire
  • J. -L. Le Guiet
Dossier Thématique / Thematic File
  • 14 Downloads

Résumé

Plus de la moitié des patients diabétiques, indépendamment du sexe, sont porteurs d’un déséquilibre vésicosphinctérien [1,2]. Le diabète est classiquement décrit comme déterminant une réduction progressive de la sensation de besoin, une réduction de la contractilité du détrusor et une augmentation progressive du résidu post-mictionnel, tous symptômes correspondant à la cystopathie diabétique [3]. Cette manifestation pathologique est une des expressions de la neuropathie diabétique dont l’histoire naturelle est bien reproduite chez l’animal et implique des mécanismes modulant l’expression de facteurs neurotrophiques. De nombreuses études ont cependant relevé chez les patients diabétiques une hyperactivité vésicale comme manifestation prévalente. C’est dans ce cadre que se discute toujours la part des pathologies d’organe, les conséquences de la macro-angiopathie, de la micro-angiopathie, de l’hyperglycémie ou des autres manifestations du syndrome métabolique dans la genèse de ces troubles. De même, les contributions respectives du déséquilibre vésicosphinctérien ou du diabète dans la genèse des complications uronéphrologiques et infectieuses de ces patients restent mal établies. Il est cependant démontré que le bon équilibre du diabète ainsi que les mesures hygiénodiététiques différaient la survenue de la cystopathie diabétique ainsi que la fréquence et la sévérité de l’incontinence urinaire chez la femme. De nouveaux développements thérapeutiques prometteurs concernant la dysfonction autonome du diabète sont aussi en cours.

Mots clés

Diabète Cystopathie Hyperactivité vésicale 

Lower urinary dysfunction in diabetes mellitus

Abstract

Over half of men and women with diabetes mellitus have a bladder dysfunction [1,2]. Voiding dysfunction in diabetes is classically described as the triad of decreased bladder sensitivity, increased post-voiding residue and impaired detrusor contractility, all typical symptoms of classic diabetic cystopathy [3]. Diabetic cystopathy is one expression of the diabetic polyneuropathy, which may be reproduced in animal models presenting with a long-term decrease in neurotrophic factors. In addition, recent studies have shown overactive bladder to be a prevalent manifestation of diabetes mellitus. Regarding pathophysiology, it is hypothesised that overactive bladder may occur as a result of macroangiopathy, microangiopathy and hyperglycemia as well as other disorders belonging to the metabolic syndrome. The respective contributions of voiding dysfunction and diabetes in the pathogenesis of uronephrologic and infectious complications need further study. It is however well established that general good health and measures taken with respect to diet in diabetes may put off the development of the autonomic cystopathy as well as the frequency and severity of incontinence in women. New promising therapies in diabetic cystopathy and related disorders are also ongoing.

Keywords

Diabetes mellitus Cystopathy Overactive bladder 

Références

  1. 1.
    Kaplan SA, Te AE, Blaivas JG (1995) Urodynamic findings in patients with diabetic cystopathy. J Urol 153: 342–344PubMedCrossRefGoogle Scholar
  2. 2.
    Goldman HB, Appell RA (1999) Voiding dysfunction in women with diabetes mellitus. Int Urogynecol J Pelvic Floor Dysfunct 10: 130–133PubMedCrossRefGoogle Scholar
  3. 3.
    Frimodt-Moller C (1980) Diabetic cystopathy: epidemiology and related disorders. Ann Intern Med 92: 318–321PubMedGoogle Scholar
  4. 4.
    Boyle JP, Honeycutt AA, Narayan KM, et al. (2001) Projection of DM burden through 2050: impact of changing demography and disease prevalence in the US. DM Care 24: 1936–1940CrossRefGoogle Scholar
  5. 5.
    Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365(9468): 1415–1428PubMedCrossRefGoogle Scholar
  6. 6.
    Norris SL, Kansagara D, Bougatsos C, Fu RUS (2008) Preventive services task force. Screening adults for type II diabetes: a review of the evidence for the US preventive services task force. Ann Intern Med 148(11): 855–868PubMedGoogle Scholar
  7. 7.
    Olapade-Olaopa EO, Morley RN, Carter CJ, Walmsley BH (1997) Diabetic cystopathy presenting as primary acute urinary retention in a previously undiagnosed young male diabetic patient. J Diabet Complications 11(6): 350–351CrossRefGoogle Scholar
  8. 8.
    Menéndez V, Cofán F, Talbot-Wright R, et al. (1996) Urodynamic evaluation in simultaneous insulin-dependent diabetes mellitus and end stage renal disease. J Urol 155(6): 2001–2004PubMedCrossRefGoogle Scholar
  9. 9.
    Nijhawan S, Mathur A, Singh V, Bhandari VM (1993) Autonomic and peripheral neuropathy in insulin-dependent diabetics. J Assoc Physicians India 41(9): 565–566PubMedGoogle Scholar
  10. 10.
    Ueda T, Yoshimura N, Yoshida O (1997) Diabetic cystopathy: relationship to autonomic neuropathy detected by sympathetic skin response. J Urol 157: 580–584PubMedCrossRefGoogle Scholar
  11. 11.
    Kebapci N, Yenilmez A, Efe B, et al. (2007) Bladder dysfunction in type II diabetic patients. Neurourol Urodyn 26(6): 814–819PubMedCrossRefGoogle Scholar
  12. 12.
    Mitsui T, Kakizaki H, Kobayashi S, et al. (1999) Vesicourethral function in diabetic patients: association of abnormal nerve conduction velocity with vesico-urethral dysfunction. Neurourol Urodyn 18(6): 639–645PubMedCrossRefGoogle Scholar
  13. 13.
    Kaplan SA, Te AE, Blaivas JG (1995) Urodynamic findings in patients with diabetic cystopathy. J Urol 153: 342–344PubMedCrossRefGoogle Scholar
  14. 14.
    Sasaki K, Yashimura N, Chancello MB (2003) Implications of diabetes mellitus in urology. Urol Clin North Am 30: 1–12PubMedCrossRefGoogle Scholar
  15. 15.
    Liu G, Daneshgari F (2005) Alterations in neurogenically mediated contractile responses of urinary bladder in rats with diabetes. Am J Physiol Renal Physiol 288(6): F1220–F1226PubMedCrossRefGoogle Scholar
  16. 16.
    Hashitani H, Suzuki H (1996) Altered electrical properties of bladder smooth muscle in streptozotocin-induced diabetic rats. Br J Urol 77: 798–804PubMedGoogle Scholar
  17. 17.
    Sasaki K, Chancellor MB, Phelan MW, et al. (2002) Diabetic cystopathy correlates with a long-term decrease in nerve growth factor levels in the bladder and lumbosacral dorsal root ganglia. J Urol 168: 1259–1264PubMedCrossRefGoogle Scholar
  18. 18.
    Soylu A, Akinci A, Yilmaz U, et al. (2006) Sympathetic skin responses in type I diabetic children: relationship to urodynamic findings. Neurourol Urodyn 5(3): 243–248CrossRefGoogle Scholar
  19. 19.
    Ishigooka M, Hashimoto T, Hayami S, et al. (1997) Thermoreceptor mediated bladder sensation in patients with diabetic cystopathy. Int Urol Nephrol 29(5): 551–555PubMedCrossRefGoogle Scholar
  20. 20.
    Esteghamati A, Rashidi A, Nikfallah A, Yousefizadeh A (2007) The association between urodynamic findings and microvascular complications in patients with long-term type II diabetes but without voiding symptoms. Diabetes Res Clin Pract 78(1): 42–50PubMedCrossRefGoogle Scholar
  21. 21.
    Goldman HB, Appell RA (2000) Diabetic bladder dysfunction. In: Appel RA (ed) Current clinical urology: voiding dysfunction: diagnosis and treatment. Humana Press, Totowa, NJ, p. 139–147Google Scholar
  22. 22.
    Kahan M, Goldberg PD, Mandel EE (1972) Neurogenic vesicle dysfunction and diabetes mellitus. Isr J Med Sci 8(6): 772–773PubMedGoogle Scholar
  23. 23.
    Vinik AI, Erbas T (2001) Recognizing and treating diabetic autonomic neuropathy. Cleve J Med 68: 928–944CrossRefGoogle Scholar
  24. 24.
    Yu HJ, Lee WC, Liu SP, et al. (2004) Unrecognized voiding difficulty in female type II diabetic patients in the diabetes clinic. Diabetes Care 27: 988–989PubMedCrossRefGoogle Scholar
  25. 25.
    Goswami R, Bal CS, Tejaswi S (2001) Prevelance of urinary tract infection and renal scars in patients with diabetes mellitus. Diabetes Res Clin Pract 53: 181–186PubMedCrossRefGoogle Scholar
  26. 26.
    Lee WC, Wu HP, Tai TY, et al. (2004) Effects of diabetes on female voiding behaviour. J Urol 172: 989–992PubMedCrossRefGoogle Scholar
  27. 27.
    Apfel SC (1999) Neurotrophic factors and diabetic peripheral neuropathy. Eur Neurol 41: 27–34PubMedCrossRefGoogle Scholar
  28. 28.
    Steinbacher BC Jr., Nadelhaft I (1998) Increased levels of nerve growth factor in the urinary bladder and hypertrophy of dorsal root ganglion neurons in the diabetic rat. Brain Res 782: 255PubMedCrossRefGoogle Scholar
  29. 29.
    Longhurst PA, Kang J, Wein AJ, Levin RM (1990) The influence of intravesical volume upon contractile responses of the whole bladder preparation from streptozotocindiabetic rats. Gen Pharmacol 21(5): 687–692PubMedGoogle Scholar
  30. 30.
    de Groat WC, Booth AM, Yoshimura N (1993) Neurophysiology of micturition and its modification in animal models of human disease. In: Maggi CA (ed) The autonomic nervous system. Nervous control of the urogenital system, vol 3. Harwood Academic Publishers, London, p. 227–290Google Scholar
  31. 31.
    Yang Z, Dolber PC, Fraser MO (2007) Diabetic urethropathy compounds the effects of diabetic cystopathy. J Urol 178(5): 2213–2219PubMedCrossRefGoogle Scholar
  32. 32.
    Bozlu M, Ulusoy E, Cayan S, et al. (2004) A comparison of four different alpha-1-blockers in benign prostatic hyperplasia patients with and without diabetes. Scand J Urol Nephrol 38: 391PubMedCrossRefGoogle Scholar
  33. 33.
    Dresner LS, Wang SP, West MW, et al. (1997) Nitric oxide inhibition simulates the enhancement of alpha-1 agonist-induced vasoconstriction in diabetes. J Surg Res 70: 119PubMedCrossRefGoogle Scholar
  34. 34.
    Starer P, Libow L (1990) Cystometric evaluation of bladder dysfunction in elderly diabetic patients. Arch Intern Med 150(4): 810–813PubMedCrossRefGoogle Scholar
  35. 35.
    Brown JS, Nyberg LM, Kusek JW, et al. (2003) Proceedings of the National Institute of Diabetes and Digestive and Kidney Diseases International Symposium on epidemiologic issues in urinary incontinence in women. Am J Obstet Gynecol 188: S77–S78PubMedCrossRefGoogle Scholar
  36. 36.
    McGrother CW, Donaldson MM, Hayward T, et al. (2006) Urinary storage symptoms and comorbidities: a prospective population cohort study in middle-aged and older women. Age Ageing 35: 16–24PubMedCrossRefGoogle Scholar
  37. 37.
    Hill SR, Fayyad AM, Jones GR (2008) Diabetes mellitus and female lower urinary tract symptoms: a review. Neurourol Urodyn 27(5): 362–367PubMedCrossRefGoogle Scholar
  38. 38.
    Yamaguchi C, Sakakibara R, Uchiyama T, et al. (2007) Overactive bladder in diabetes: a peripheral or central mechanism? Neurourol Urodyn 26(6): 807–813PubMedCrossRefGoogle Scholar
  39. 39.
    Klein JP, Waxman SG (2003) The brain in diabetes: molecular changes in neurons and their implications for end organ damage. Lancet Neurol 2: 548–554PubMedCrossRefGoogle Scholar
  40. 40.
    Takimoto Y, Kodama M, Sugimoto S, et al. (1999) The effect of 5-HT 2 antagonist for urinary frequency symptom on diabetes mellitus patients. Nippon Hinyokika Gakkai Zasshi 90(8): 731–740PubMedGoogle Scholar
  41. 41.
    Longhurst PA, Kang J, Wein AJ, Levin RM (1990) Length-tension relationship of urinary bladder strips from streptozotocin-diabetic rats. Pharmacology 40: 110–121PubMedCrossRefGoogle Scholar
  42. 42.
    Morrison JF (1995) The excitability of the micturition reflex. Scand J Urol Nephrol Suppl 175: 21–25PubMedGoogle Scholar
  43. 43.
    Pinna C, Zanardo R, Puglisi L (2000) Prostaglandin-release impairment in the bladder epithelium of streptozotocin induced diabetic rats. Eur J Pharmacol 388: 267–273PubMedCrossRefGoogle Scholar
  44. 44.
    Tong YC, Chin WT, Cheng JT (1999) Alterations in urinary bladder M2-muscarinic receptor protein and mRNA in 2-week streptozotocin-induced diabetic rats. Neurosci Lett 277: 173–176PubMedCrossRefGoogle Scholar
  45. 45.
    Tong YC, Cheng JT (2002) Alteration of M3 subtype muscarinic receptors in the diabetic rat urinary bladder. Pharmacology 64: 148–151PubMedCrossRefGoogle Scholar
  46. 46.
    Kanda M, Eto K, Tanabe N, et al. (1997) Effects of ONO-2235, an aldose reductase inhibitor, on muscarinic receptors and contractile response of the urinary bladder in rats with streptozotocin-induced diabetes. Jpn J Pharmacol 73: 221–228PubMedCrossRefGoogle Scholar
  47. 47.
    Dahle SE, Chokkalingam AP, Gao YT, et al. (2002) Body size and serum levels of insulin and leptin in relation to the risk of benign prostatic hyperplasia. J Urol 168: 599–604PubMedCrossRefGoogle Scholar
  48. 48.
    Ozden C, Ozdal O, Urgancioglu G, et al. (2007) The correlation between metabolic syndrome and prostatic growth in patients with benign prostatic hyperplasia. Eur Urol 51(1): 199–203PubMedCrossRefGoogle Scholar
  49. 49.
    Hammarsten J, Hogstedt B (2001) Hyperinsulinaemia as a risk factor for developing benign prostatic hyperplasia. Eur Urol 39: 151–158PubMedCrossRefGoogle Scholar
  50. 50.
    McVary K (2006) Lower urinary tract symptoms and sexual dysfunction: epidemiology and pathophysiology. BJU Int (Suppl)2: 23–28CrossRefGoogle Scholar
  51. 51.
    Steers WD, Clemow DB, Persson K, et al. (1999) The spontaneously hypertensive rat: insight into the pathogenesis of irritative symptoms in benign prostatic hyperplasia and young anxious males. Exp Physiol 84(1): 137–147PubMedGoogle Scholar
  52. 52.
    Shieh SM, Sheu WH, Shen DC, et al. (1992) Glucose, insulin, and lipid metabolism in doxazosintreated patients with hypertension. Am J Hypertens 5: 827–831PubMedGoogle Scholar
  53. 53.
    Lifford KL, Curhan GC, Hu FB, et al. (2005) Type II DM mellitus and risk of developing urinary incontinence. J Am Geriatr Soc 53: 1851–1857PubMedCrossRefGoogle Scholar
  54. 54.
    Brown JS, Grady D, Ouslander JG, et al. (1999) Prevalence of urinary incontinence and associated risk factors in postmenopausal women. Heart&Estrogen/Progestin Replacement Study (HERS) Research Group. Obstet Gynecol 94(1): 66–70PubMedCrossRefGoogle Scholar
  55. 55.
    Jackson RA, Vittinghoff E, Kanaya AM, et al. (2004) Health, Aging, and Body Composition Study. Urinary incontinence in elderly women: findings from the Health, Aging, and Body Composition Study. Obstet Gynecol 104(2): 301–307PubMedGoogle Scholar
  56. 56.
    Brown JS, Vittinghoff E, Lin F, et al. (2006) Prevalence and risk factors for urinary incontinence in women with type II diabetes and impaired fasting glucose: findings from the National Health and Nutrition Examination Survey (NHANES) 2001–2002. Diabetes Care 29(6): 1307–1312PubMedCrossRefGoogle Scholar
  57. 57.
    Kim JH, Huang X, Liu G, et al. (2007) Diabetes slows the recovery from urinary incontinence due to simulated childbirth in female rats. Am J Physiol Regul Integr Comp Physiol 293(2): R950–R955PubMedGoogle Scholar
  58. 58.
    Hendrix SL, Cochrane BB, Nygaard IE, et al. (2005) Effects of estrogen with and without progestin on urinary incontinence. JAMA 293: 935–948PubMedCrossRefGoogle Scholar
  59. 59.
    Stapleton A (2002) Urinary tract infections in patients with diabetes. Am J Med 113(Suppl 1A): S80–S84CrossRefGoogle Scholar
  60. 60.
    Zhanel GG, Nicolle LE, Harding GK (1995) Prevalence of asymptomatic bacteriuria and associated host factors in women with diabetes mellitus: the Manitoba Diabetic Urinary Infection Study Group. Clin Infect Dis 21: 316–322PubMedGoogle Scholar
  61. 61.
    Geerlings SE, Stolk RP, Camps MJ, et al. (2000) Asymptomatic bacteriuria can be considered a diabetic complication in women with diabetes mellitus. Adv Exp Med Biol 485: 309–314PubMedCrossRefGoogle Scholar
  62. 62.
    Geerlings SE, Stolk RP, Camps MJ, et al. (2001) Consequences of asymptomatic bacteriuria in women with diabetes mellitus. Arch Intern Med 161: 1421–1427PubMedCrossRefGoogle Scholar
  63. 63.
    Brown JS, Vittinghoff E, Kanaya AM, et al. (2001) Urinary tract infections in postmenopausal women: effect of hormone therapy and risk factors. Obstet Gynecol 98: 1045–1052PubMedCrossRefGoogle Scholar
  64. 64.
    Rodhe N, Englund L, Mölstad S, Samuelsson E (2008) Bacteriuria is associated with urge urinary incontinence in older women. Scand J Prim Health Care 26(1): 35–39PubMedCrossRefGoogle Scholar
  65. 65.
    Harding GK, Zhanel GG, Nicolle LE, Cheang M (2002) Antimicrobial treatment in diabetic women with asymptomatic bacteriuria. N Engl J Med 347: 1576–1583PubMedCrossRefGoogle Scholar
  66. 66.
    Geerlings SE, Stolk RP, Camps MJ, et al. (2000) Risk factors for symptomatic urinary tract infection women with diabetes. Diabetes Care 23: 1737–1741PubMedCrossRefGoogle Scholar
  67. 67.
    Hooton TM, Scholes D, Hughes JP, et al. (1996) A prospective study of risk factors for symptomatic urinary tract infection in young women. N Engl J Med 335: 468–474PubMedCrossRefGoogle Scholar
  68. 68.
    Hansen DS, Gottschau A, Kolmos HJ (1998) Epidemiology of Klebsiella bacteraemia: a case control study using Escherichia coli bacteraemia as control. J Hosp Infect 38: 119–132PubMedCrossRefGoogle Scholar
  69. 69.
    Geerlings SE, Meiland R, van Lith EC, et al. (2002) Adherence of type I-fimbriated Escherichia coli to uroepithelial cells: more in diabetic women than in control subjects. DM Care 25: 1405–1409CrossRefGoogle Scholar
  70. 70.
    Geerlings Se, Hoepelman AI (1999) Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 26(3–4): 259–265PubMedCrossRefGoogle Scholar
  71. 71.
    Nordén G, Granerus G, Nyberg G (1988) Diabetic cystopathy: a risk factor in diabetic nephropathy? J Diabet Complications 2(4): 203–206PubMedCrossRefGoogle Scholar
  72. 72.
    Torffvit O, Agardh CD, Mattiasson A (1997) Lack of association between cystopathy and progression of diabetic nephropathy in insulin-dependent diabetes mellitus. Scand J Urol Nephrol 31(4): 365–369PubMedCrossRefGoogle Scholar
  73. 73.
    Menéndez V, Cofán F, Talbot-Wright R, et al. (1996) Urodynamic evaluation in simultaneous insulin-dependent diabetes mellitus and end stage renal disease. J Urol 155(6): 2001–2004PubMedCrossRefGoogle Scholar
  74. 74.
    Chartier-Kastler E, Robain G, Mozer P, Ruffion A (2007) Lower urinary tract dysfunction and diabetes mellitus Prog Urol 17(3): 371–378PubMedCrossRefGoogle Scholar
  75. 75.
    Brown JS, Wing R, Barrett-Connor E, et al. Diabetes Prevention Program Research Group (2006) Lifestyle intervention is associated with lower prevalence of urinary incontinence: the Diabetes Prevention Program. Diabetes Care 29(2): 385–390PubMedCrossRefGoogle Scholar
  76. 76.
    Tong YC, Cheng JT (2007) Aldose reductase inhibitor ONO-2235 restores the alterations of bladder nerve growth factor and neurotrophin receptor p75 genetic expression in streptozotocin induced diabetic rats. J Urol 178(5): 2203–2207 (Epub 2007 Sep 17)PubMedCrossRefGoogle Scholar
  77. 77.
    Goins WF, Yoshimura N, Phelan MW, et al. (2001) Herpes simplex virus mediated nerve growth factor expression in bladder and afferent neurons: potential treatment for diabetic bladder dysfunction. J Urol 165: 1748–1754PubMedCrossRefGoogle Scholar
  78. 78.
    Saito M, Kinoshita Y, Satoh I, et al. (2007) Ability of cyclohexenonic long-chain fatty alcohol to reverse diabetes-induced cystopathy in the rat. Eur Urol 51(2): 479–487PubMedCrossRefGoogle Scholar

Copyright information

© Springer Paris 2008

Authors and Affiliations

  • J. Kerdraon
    • 1
  • F. Busnel
    • 1
  • P. Coignard
    • 1
  • G. Le Claire
    • 1
  • J. -L. Le Guiet
    • 1
  1. 1.CMRRF KerpapePloemeur cedexFrance

Personalised recommendations