Journal of General Internal Medicine

, Volume 34, Issue 8, pp 1658–1661 | Cite as

GABABR-Mediated Paraneoplastic Limbic Encephalitis Due To Thymic Small Cell Carcinoma

  • Talya Bordin-WoskEmail author
  • Sandip Pravin Patel
  • Sarah F. Horman
Clinical Practice: Clinical Vignettes


We report the case of a 55-year-old male who presented with several weeks of seizures, agitation, progressive confusion, and receptive aphasia. CSF showed a monocytic pleocytosis and tested positive for GABAB receptor autoantibodies. Pathological examination of an excisional mediastinal lymph node biopsy showed thymic small cell carcinoma, supporting a diagnosis of paraneoplastic limbic encephalitis (PLE). PLE is a subtype of limbic encephalitis and is associated with an array of autoantibodies. Neurologic symptoms related to PLE may precede the detection of the primary cancer. Recognition of the constellation of clinical features of limbic encephalitis should prompt initiation of diagnostic testing for this condition as well as evaluation for an underlying malignancy. A review of the literature reveals that this is the first case report of a patient with thymic small cell cancer presenting with PLE.


paraneoplastic limbic encephalitis thymic small cell carcinoma GABABR antibody 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they do not have a conflict of interest.

Consent for Publication

Informed consent was obtained from the patient’s wife for publication of this case report and any accompanying images.


  1. 1.
    Lee BY, Newberg AB, Liebeskind DS, Kung J, Alavi A. FDG-PET Findings in patients with suspected encephalitis. Clin Nucl Med. 2004;29(10):620–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Solnes LB, Jones KM, Rowe SP, et al. Diagnostic value of 18 F-FDG PET/CT versus MRI in the setting of antibody specific autoimmune encephalitis. J Nucl Med. 2017;58(8):1307–1313.PubMedCrossRefGoogle Scholar
  3. 3.
    Quartuccio N, Caobelli F, Evangelista L, et al. The role of PET/CT in the evaluation of patients affected by limbic encephalitis: A systematic review of the literature. J Neuroimmunol. 2015;284:44–48.PubMedCrossRefGoogle Scholar
  4. 4.
    Hoftberger R, Rosenfeld MR, Dalmau J. Update on neurological paraneoplastic syndromes. Curr Opin Oncol. 2015;27(6):489–495.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Jammoul A, Li Y, Rae-Grant A. Autonantibody-mediated encephalitis: Not just paraneoplastic, not just limbic, and not untreatable. Clev Clin J Med. 2016;83(1):43–53.CrossRefGoogle Scholar
  6. 6.
    Lancaster E, Lai M, Peng X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol. 2010;9:67–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Boronat A, Sabater L, Saiz A, Dalmau J, Graus F. GABA(B) receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology. 2011;76(9):795–800.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Höftberger R, Titulaer MJ, Sabater L, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology. 2013;81(17):1500–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Dogan OM, Deuretzbacher D, Haensch CA, et al. Limbic encephalitis due to GABA b and MPA receptor antibodies: a case series. J Neurol Neurosurg Psychiatry. 2015;86:965–972.CrossRefGoogle Scholar
  10. 10.
    Guan HZ, Ren HT, Yang XZ, et al. Limbic encephalitis associated with anti-γ-aminobutyric acid B receptor antibodies: a case series from China. China Med J. 2015;128(22):3023–8.CrossRefGoogle Scholar
  11. 11.
    Gultekin SH, Rosenfeld MR, Voltz R, et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumor association in 50 patients. Brain. 2000;123(7):1481–1494.PubMedCrossRefGoogle Scholar
  12. 12.
    Alexopoulos H, Dagklis IE, Akrivou S, Bostantjopoulou S, Dalackas MC. Autoimmune encephalitis with GABAB antibodies, thymoma, and GABAB receptor thymic expression. Neurol Neuroimmino Neuroinflamm. 2014;1(4):e39.CrossRefGoogle Scholar
  13. 13.
    Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):306–372.CrossRefGoogle Scholar
  14. 14.
    Ye L, Want W, Ospina NS, et al. Clinical features and prognosis of thymic neuroendocrine tumours associated with multiple endocrine neoplasia type 1: a single-center study, systemic review and meta-analysis. Clin Endocrinol. 2017;87(6):706–716.CrossRefGoogle Scholar
  15. 15.
    Sullivan JL, Weksler B. Neuroendocrine tumors of the thymus: analysis of factors affecting survival in 254 patients. Ann Thorac Surg. 2017;103(3):935–939.PubMedCrossRefGoogle Scholar
  16. 16.
    Travis W.D., Brambilla E., Muller-Hermelink H.K., Harris CC, eds. World health organization classification of tumours. tathology and genetics of tumours of the lung, pleura, thymus and heart. IARC Press: Lyon; 2004:188–95.Google Scholar
  17. 17.
    Fletcher CD. Diagnostic histopathology of tumors, 2nd ed. Vol. 2. Edinburgh: Churchill Livingstone;2000. 1276–1295.Google Scholar
  18. 18.
    Cai YC, Banner B, Glickman J, Odze RD. Cytokeratin 7 and 20 and thyroid transcription factor 1 can help distinguish pulmonary from gastrointestinal carcinoid and pancreatic endocrine tumors. Hum Pathol. 2001;32:1087–1093.PubMedCrossRefGoogle Scholar
  19. 19.
    Folpe AL, Gown AM, Lamps LW, et al. Thyroid transcription factor-1: immunohistochemical evaluation in pulmonary neuroendocrine tumors. Mod Pathol. 1999;12:5–8.PubMedGoogle Scholar
  20. 20.
    Kaufmann O, Dietel M. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology. 2000;36(5):415–420.PubMedCrossRefGoogle Scholar
  21. 21.
    Asirvatham JR, Esposito MJ, Bhuiya TA. Role of PAX-8, CD5, and CD117 in distinguishing thymic carcinoma from poorly differentiated lung carcinoma. Appl Immunohistochem Mol Morphol. 2014;22(5):372–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Weissferdt A, Moran CA. Pax8 expression in thymic epithelial neoplasms: an immunohistochemical analysis. Am J Surg Pathol. 2011;35(9):1305–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Paul ML, Kleinig TJ. Therapy of paraneoplastic disorders of the CNS. Expert Rev Neurother. 2015;15(2):187–193.PubMedCrossRefGoogle Scholar
  24. 24.
    Lancaster. The diagnosis and treatment of Autoimmune encephalitis. J Clin Neurol. 2016;12(1):1–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Yeshokumar AK, Gordon-Lipkin E, Arenivas A, et al. Neurobehavioral outcomes in autoimmune encephalitis. J Neuroimmunol. 2017;213;8–14.CrossRefGoogle Scholar
  26. 26.
    Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12(2):157–165.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Society of General Internal Medicine 2019

Authors and Affiliations

  • Talya Bordin-Wosk
    • 1
    Email author
  • Sandip Pravin Patel
    • 2
  • Sarah F. Horman
    • 1
  1. 1.Division of Hospital Medicine, Department of Medicine University of California, San DiegoSan DiegoUSA
  2. 2.Division of Hematology- Oncology, Department of MedicineUC San DiegoSan DiegoUSA

Personalised recommendations