Journal of General Internal Medicine

, Volume 32, Issue 10, pp 1083–1089 | Cite as

Categorical Risk Perception Drives Variability in Antibiotic Prescribing in the Emergency Department: A Mixed Methods Observational Study

  • Eili Y. Klein
  • Elena M. Martinez
  • Larissa May
  • Mustapha Saheed
  • Valerie Reyna
  • David A. Broniatowski
Original Research



Adherence to evidence-based antibiotic therapy guidelines for treatment of upper respiratory tract infections (URIs) varies widely among clinicians. Understanding this variability is key for reducing inappropriate prescribing.


To measure how emergency department (ED) clinicians’ perceptions of antibiotic prescribing risks affect their decision-making.


Clinician survey based on fuzzy-trace theory, a theory of medical decision-making, combined with retrospective data on prescribing outcomes for URI/pneumonia visits in two EDs. The survey predicts the categorical meanings, or gists, that individuals derive from given information.


ED physicians, residents, and physician assistants (PAs) who completed surveys and treated patients with URI/pneumonia diagnoses between August 2014 and December 2015.

Main Measures

Gists derived from survey responses and their association with rates of antibiotic prescribing per visit.

Key Results

Of 4474 URI/pneumonia visits, 2874 (64.2%) had an antibiotic prescription. However, prescribing rates varied from 7% to 91% for the 69 clinicians surveyed (65.2% response rate). Clinicians who framed therapy-prescribing decisions as a categorical choice between continued illness and possibly beneficial treatment (“why not take a risk?” gist, which assumes antibiotic therapy is essentially harmless) had higher rates of prescribing (OR 1.28 [95% CI, 1.06–1.54]). Greater agreement with the “antibiotics may be harmful” gist was associated with lower prescribing rates (OR 0.81 [95% CI, 0.67–0.98]).


Our results indicate that clinicians who perceive prescribing as a categorical choice between patients remaining ill or possibly improving from therapy are more likely to prescribe antibiotics. However, this strategy assumes that antibiotics are essentially harmless. Clinicians who framed decision-making as a choice between potential harms from therapy and continued patient illness (e.g., increased appreciation of potential harms) had lower prescribing rates. These results suggest that interventions to reduce inappropriate prescribing should emphasize the non-negligible possibility of serious side effects.


fuzzy-trace theory drivers of decision-making non-negligible risks of unnecessary antibiotics gist of antibiotic therapy antibiotic resistance 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they do not have a conflict of interest.

Supplementary material

11606_2017_4099_MOESM1_ESM.docx (96 kb)
ESM 1 (DOCX 95 kb)


  1. 1.
    Gerber JS, Prasad PA, Russell Localio A, et al. Variation in Antibiotic Prescribing Across a Pediatric Primary Care Network. J Pediatr Infect Dis Soc. 2015;4(4):297–304. doi: 10.1093/jpids/piu086.CrossRefGoogle Scholar
  2. 2.
    Gerber JS, Newland JG, Coffin SE, et al. Variability in antibiotic use at children’s hospitals. Pediatrics. 2010;126(6):1067–1073. doi: 10.1542/peds.2010-1275.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fleming-Dutra KE, Hersh AL, Shapiro DJ, et al. Prevalence of Inappropriate Antibiotic Prescriptions Among US Ambulatory Care Visits, 2010-2011. JAMA. 2016;315(17):1864–1873. doi: 10.1001/jama.2016.4151.CrossRefPubMedGoogle Scholar
  4. 4.
    Braykov NP, Morgan DJ, Schweizer ML, et al. Assessment of empirical antibiotic therapy optimisation in six hospitals: an observational cohort study. Lancet Infect Dis. 2014;14(12):1220–1227.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fridkin SK, Baggs J, Fagan R, et al. Vital Signs: Improving Antibiotic Use Among Hospitalized Patients. Morb Mortal Wkly Rep. 2014;63:1–7.Google Scholar
  6. 6.
    Barlam TF, Morgan JR, Wetzler LM, Christiansen CL, Drainoni M-L. Antibiotics for Respiratory Tract Infections: A Comparison of Prescribing in an Outpatient Setting. Infect Control Hosp Epidemiol. 2015;36(02):153–159.CrossRefPubMedGoogle Scholar
  7. 7.
    Xu KT, Roberts D, Sulapas I, Martinez O, Berk J, Baldwin J. Over-prescribing of antibiotics and imaging in the management of uncomplicated URIs in emergency departments. BMC Emerg Med. 2013;13(1):7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gerber JS, Prasad PA, Localio AR, et al. Racial differences in antibiotic prescribing by primary care pediatricians. Pediatrics. 2013;131(4):677–684. doi: 10.1542/peds.2012-2500.CrossRefPubMedGoogle Scholar
  9. 9.
    Bharathiraja R, Sridharan S, Chelliah LR, Suresh S, Senguttuvan M. Factors Affecting Antibiotic Prescribing Pattern in Pediatric Practice. Indian J Pediatr. 2005;72(10):877–879.CrossRefPubMedGoogle Scholar
  10. 10.
    Livorsi D, Comer A, Matthias MS, Perencevich EN, Bair MJ. Factors influencing antibiotic-prescribing decisions among inpatient physicians: a qualitative investigation. Infect Control Hosp Epidemiol. 2015;36(09):1065–1072.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Menéndez R, Torres A, Zalacaín R, et al. Guidelines for the treatment of community-acquired pneumonia: predictors of adherence and outcome. Am J Respir Crit Care Med. 2005;172(6):757–762. doi: 10.1164/rccm.200411-1444OC.CrossRefPubMedGoogle Scholar
  12. 12.
    Halm EA, Switzer GE, Mittman BS, Walsh MB, Chang C-CH, Fine MJ. What Factors Influence Physicians’ Decisions to Switch from Intravenous to Oral Antibiotics for Community-acquired Pneumonia? J Gen Intern Med. 2001;16(9):599–605. doi: 10.1046/j.1525-1497.2001.016009599.x.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Halm EA, Atlas SJ, Borowsky LH, et al. xUnderstanding physician adherence with a pneumonia practice guideline: effects of patient, system, and physician factors. Arch Intern Med. 2000;160(1):98–104.Google Scholar
  14. 14.
    Avorn J, Solomon DH. Cultural and economic factors that (mis)shape antibiotic use: the nonpharmacologic basis of therapeutics. Ann Intern Med. 2000;133(2):128–135.CrossRefPubMedGoogle Scholar
  15. 15.
    Nyquist AC, Gonzales R, Steiner JF, Sande MA. Antibiotic prescribing for children with colds, upper respiratory tract infections, and bronchitis. JAMA. 1998;279(11):875–877.CrossRefPubMedGoogle Scholar
  16. 16.
    Parker HM, Mattick K. The determinants of antimicrobial prescribing among hospital doctors in England: a framework to inform tailored stewardship interventions. Br J Clin Pharmacol. 2016; 82(2):431–40. doi: 10.1111/bcp.12953.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Suda KJ, Hicks LA, Roberts RM, Hunkler RJ, Danziger LH. A national evaluation of antibiotic expenditures by healthcare setting in the United States, 2009. J Antimicrob Chemother. 2013; 68(3):715–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Md Rezal RS, Hassali MA, Alrasheedy AA, Saleem F, Md Yusof FA, Godman B. Physicians’ knowledge, perceptions and behaviour towards antibiotic prescribing: a systematic review of the literature. Expert Rev Anti Infect Ther. 2015;13(5):665–680.CrossRefPubMedGoogle Scholar
  19. 19.
    May L, Gudger G, Armstrong P, et al. Multisite exploration of clinical decision making for antibiotic use by emergency medicine providers using quantitative and qualitative methods. Infect Control Hosp Epidemiol. 2014;35(09):1114–1125.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Grijalva CG, Nuorti JP, Griffin MR. Antibiotic prescription rates for acute respiratory tract infections in US ambulatory settings. JAMA. 2009;302(7):758–766.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang EE, Einarson TR, Kellner JD, Conly JM. Antibiotic prescribing for Canadian preschool children: evidence of overprescribing for viral respiratory infections. Clin Infect Dis. 1999;29(1):155–160.CrossRefPubMedGoogle Scholar
  22. 22.
    Dugas AF, Kirsch TD, Toerper M, et al. An Electronic Emergency Triage System to Improve Patient Distribution by Critical Outcomes. J Emerg Med. 2016;50(6):910–918. doi: 10.1016/j.jemermed.2016.02.026.CrossRefPubMedGoogle Scholar
  23. 23.
    Reyna VF, Adam MB. Fuzzy-trace theory, risk communication, and product labeling in sexually transmitted diseases. Risk Anal. 2003;23(2):325–342.CrossRefPubMedGoogle Scholar
  24. 24.
    Reyna VF. A Theory of Medical Decision Making and Health: Fuzzy Trace Theory. Med Decis Making. 2008;28(6):850–865. doi: 10.1177/0272989X08327066.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Adam MB, Reyna VF. Coherence and correspondence criteria for rationality: experts’ estimation of risks of sexually transmitted infections. J Behav Decis Mak. 2005;18(3):169–186. doi: 10.1002/bdm.493.CrossRefGoogle Scholar
  26. 26.
    Reyna VF. Risk perception and communication in vaccination decisions: a fuzzy-trace theory approach. Vaccine. 2012;30(25):3790–3797. doi: 10.1016/j.vaccine.2011.11.070.CrossRefPubMedGoogle Scholar
  27. 27.
    Broniatowski DA, Klein EY, Reyna VF. Germs are germs, and why not take a risk? Patients’ expectations for prescribing antibiotics in an inner-city emergency department. Med Decis Making. 2015;35(1):60–67. doi: 10.1177/0272989X14553472.CrossRefPubMedGoogle Scholar
  28. 28.
    Reyna VF, Chick CF, Corbin JC, Hsia AN. Developmental reversals in risky decision making intelligence agents show larger decision biases than college students. Psychol Sci. 2014; 25(1): 76–84..CrossRefPubMedGoogle Scholar
  29. 29.
    DiStefano C, Zhu M, Mindrila D. Understanding and using factor scores: Considerations for the applied researcher. Pract Assess Res Eval. 2009;14(20):1–11.Google Scholar
  30. 30.
    Goldstein H, Browne W, Rasbash J. Multilevel modelling of medical data. Stat Med. 2002;21(21):3291–3315. doi: 10.1002/sim.1264.CrossRefPubMedGoogle Scholar
  31. 31.
    Mills B, Reyna VF, Estrada S. Explaining contradictory relations between risk perception and risk taking. Psychol Sci. 2008;19(5):429–433.CrossRefPubMedGoogle Scholar
  32. 32.
    Reyna VF, Estrada SM, DeMarinis JA, Myers RM, Stanisz JM, Mills BA. Neurobiological and memory models of risky decision making in adolescents versus young adults. J Exp Psychol Learn Mem Cogn. 2011;37(5):1125.CrossRefPubMedGoogle Scholar
  33. 33.
    Reyna VF, Mills BA. Theoretically motivated interventions for reducing sexual risk taking in adolescence: A randomized controlled experiment applying fuzzy-trace theory. J Exp Psychol Gen. 2014;143(4):1627–48.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mehrotra A, Linder JA. Tipping the Balance Toward Fewer Antibiotics. JAMA Intern Med. 2016;176(11):1649–50. doi: 10.1001/jamainternmed.2016.6254.CrossRefPubMedGoogle Scholar
  35. 35.
    Linder JA, Schnipper JL, Tsurikova R, Volk LA, Middleton B. Self-reported familiarity with acute respiratory infection guidelines and antibiotic prescribing in primary care. Int J Qual Health Care. 2010;22(6):469–475.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Finkelstein JA, Davis RL, Dowell SF, et al. Reducing antibiotic use in children: a randomized trial in 12 practices. Pediatrics. 2001;108(1):1–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Gonzales R, Steiner JF, Lum A, Barrett PH. Decreasing antibiotic use in ambulatory practice: impact of a multidimensional intervention on the treatment of uncomplicated acute bronchitis in adults. JAMA. 1999;281(16):1512–1519.CrossRefPubMedGoogle Scholar
  38. 38.
    Linder JA, Doctor JN, Friedberg MW, et al. Time of day and the decision to prescribe antibiotics. JAMA Intern Med. 2014;174(12):2029–2031. doi: 10.1001/jamainternmed.2014.5225.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Meeker D, Knight TK, Friedberg MW, et al. Nudging guideline-concordant antibiotic prescribing: a randomized clinical trial. JAMA Intern Med. 2014;174(3):425–431. doi: 10.1001/jamainternmed.2013.14191.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Meeker D, Linder JA, Fox CR, et al. Effect of Behavioral Interventions on Inappropriate Antibiotic Prescribing Among Primary Care Practices: A Randomized Clinical Trial. JAMA. 2016;315(6):562–570. doi: 10.1001/jama.2016.0275.CrossRefPubMedGoogle Scholar
  41. 41.
    Reyna VF, Lloyd FJ. Physician decision making and cardiac risk: effects of knowledge, risk perception, risk tolerance, and fuzzy processing. J Exp Psychol Appl. 2006;12(3):179–195. doi: 10.1037/1076-898X.12.3.179.CrossRefPubMedGoogle Scholar
  42. 42.
    Teixeira Rodrigues A, Roque F, Falcão A, Figueiras A, Herdeiro MT. Understanding physician antibiotic prescribing behaviour: a systematic review of qualitative studies. Int J Antimicrob Agents. 2013;41(3):203–212. doi: 10.1016/j.ijantimicag.2012.09.003.CrossRefPubMedGoogle Scholar
  43. 43.
    Tonkin-Crine S, Yardley L, Little P. Antibiotic prescribing for acute respiratory tract infections in primary care: a systematic review and meta-ethnography. J Antimicrob Chemother. 2011;66(10):2215–2223. doi: 10.1093/jac/dkr279.CrossRefPubMedGoogle Scholar
  44. 44.
    Fraenkel L, Peters E, Charpentier P, et al. Decision tool to improve the quality of care in rheumatoid arthritis. Arthritis Care Res. 2012;64(7):977–985.Google Scholar
  45. 45.
    Fraenkel L, Matzko CK, Webb DE, et al. Use of decision support for improved knowledge, values clarification, and informed choice in patients with rheumatoid arthritis. Arthritis Care Res. 2015;67(11):1496–1502.CrossRefGoogle Scholar

Copyright information

© Society of General Internal Medicine 2017

Authors and Affiliations

  • Eili Y. Klein
    • 1
    • 2
    • 3
  • Elena M. Martinez
    • 2
  • Larissa May
    • 4
  • Mustapha Saheed
    • 1
  • Valerie Reyna
    • 5
  • David A. Broniatowski
    • 6
  1. 1.Department of Emergency MedicineJohns Hopkins School of MedicineBaltimoreUSA
  2. 2.Center for Disease Dynamics, Economics & PolicyWashingtonUSA
  3. 3.Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  4. 4.Department of Emergency MedicineUniversity of California, DavisSacramentoUSA
  5. 5.Human Neuroscience Institute, Center for Behavioral Economics and Decision Research and Human Neuroscience InstituteCornell UniversityIthacaUSA
  6. 6.Department of Engineering Management and Systems EngineeringThe George Washington UniversityWashingtonUSA

Personalised recommendations