Journal of General Internal Medicine

, Volume 29, Issue 12, pp 1599–1606 | Cite as

Intensive Blood Pressure Control, Falls, and Fractures in Patients with Type 2 Diabetes: The ACCORD Trial

  • Karen L. Margolis
  • Lisa Palermo
  • Eric Vittinghoff
  • Gregory W. Evans
  • Hal H. Atkinson
  • Bruce P. Hamilton
  • Robert G. Josse
  • Patrick J. O’Connor
  • Debra L. Simmons
  • Margaret Tiktin
  • Ann V. Schwartz
Original Research



There are few rigorous studies to confirm or refute the commonly cited concern that control of blood pressure to lower thresholds may result in an increased risk of falls and fractures.


To compare falls and fractures in participants with type 2 diabetes in the intensive (targeting a systolic blood pressure of < 120 mmHg) and standard (targeting a systolic blood pressure of < 140 mmHg) blood pressure control arms of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) randomized trial (N = 4,733).


A subset of 3,099 participants self-reported annually on the occurrence of falls and non-spine fractures. Fractures were centrally adjudicated.


The incidence of falls in the two treatment groups was compared using a random-effects negative binomial model, and fracture risk was compared using Cox proportional hazards models.


At enrollment in both groups, the mean age was 62 years, 44 % were women, 25 % were Black, and mean blood pressure was 138/75 mmHg. During follow-up, all classes of medications, particularly thiazide diuretics, were more commonly prescribed in the intensive group. After 1 year of follow-up, the mean systolic blood pressure was 133 ± 15 mmHg in the standard group and 119 ± 14 mmHg in the intensive group. The adjusted rate of falls did not differ in the intensive and standard groups (62.2/100 person-years vs. 74.1/100 person-years, RR = 0.84, 95 % CI 0.54–1.29, p = 0.43). The risk of non-spine fractures was nonsignificantly lower in the intensive than in the standard blood pressure group (HR 0.79, 95 % CI 0.62–1.01, p = 0.06).


We conclude that intensive antihypertensive treatment that lowered mean systolic blood pressure to below 120 mmHg was not associated with an increased risk of falls or non-spine fractures in patients age 40 to 79 years with type 2 diabetes.


type 2 diabetes mellitus hypertension falls fractures 


Sources of Funding

The ACCORD Trial was funded by the National Heart, Lung and Blood Institute, and ACCORD-BONE was funded by the National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK069514, Ann Schwartz, PI), Trial Registration: Identifier: NCT00000620.

Financial Disclosure

Ann Schwartz has research funding from GLAXOSMITHKLINE (GSK). Margaret Tiktin consults for NovoNordisk.

Conflicts of Interest

The authors declare that they do not have a conflict of interest.

Supplementary material

11606_2014_2961_MOESM1_ESM.docx (283 kb)
Supplemental Figure 1 (DOCX 282 kb)
11606_2014_2961_MOESM2_ESM.docx (45 kb)
Supplemental Figure 2 (DOCX 45 kb)


  1. 1.
    Collins R, Peto R, MacMahon S, Hebert P, Fiebach N, Eberlein K, Godwin J, Qizilbash N, Taylor J, Hennekens C. Blood pressure, stroke, and coronary heart disease. Part 2, short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet. 1990;335:827–38.PubMedCrossRefGoogle Scholar
  2. 2.
    Turnbull F. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362(9395):1527–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Czernichow S, Zanchetti A, Turnbull F, Barzi F, Ninomiya T, Kengne AP, Lambers Heerspink HJ, Perkovic V, Huxley R, Arima H, Patel A, Chalmers J, Woodward M, MacMahon S, Neal B. The effects of blood pressure reduction and of different blood pressure-lowering regimens on major cardiovascular events according to baseline blood pressure: meta-analysis of randomized trials. J Hypertens. 2011;29(1):4–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Stokes GS. Management of hypertension in the elderly patient. Clin Interv Aging. 2009;4:379–89.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Riefkohl EZ, Bieber HL, Burlingame MB, Lowenthal DT. Medications and falls in the elderly: a review of the evidence and practical considerations. Pharm Ther. 2003;28(11):724–33.Google Scholar
  6. 6.
    SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group. JAMA. 1991;265(24):3255–64.CrossRefGoogle Scholar
  7. 7.
    Curb J, Applegate W, Vogt T, Pressel S, Lee M, Hoffmeier M, Schron R, Bearden D, Huber M, Moye L, Systolic Hypertension in the Elderly Program Cooperative Group. Antihypertensive therapy and falls and fractures in the systolic hypertension in the elderly program. J Am Geriatr Soc. 1993;41:SA15.Google Scholar
  8. 8.
    Peters R, Beckett N, Burch L, de Vernejoul MC, Liu L, Duggan J, Swift C, Gil-Extremera B, Fletcher A, Bulpitt C. The effect of treatment based on a diuretic (indapamide) +/− ACE inhibitor (perindopril) on fractures in the Hypertension in the Very Elderly Trial (HYVET). Age Ageing. 2010;39(5):609–16.PubMedCrossRefGoogle Scholar
  9. 9.
    The ACCORD Study Group. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85.PubMedCentralCrossRefGoogle Scholar
  10. 10.
    Buse JB, Bigger JT, Byington RP, Cooper LS, Cushman WC, Friedewald WT, Genuth S, Gerstein HC, Ginsberg HN, Goff DC Jr, Grimm RH Jr, Margolis KL, Probstfield JL, Simons-Morton DG, Sullivan MD. Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial: design and methods. Am J Cardiol. 2007;99(12A):21i–33i.PubMedCrossRefGoogle Scholar
  11. 11.
    Cushman WC, Grimm RH Jr, Cutler JA, Evans GW, Capes S, Corson MA, Sadler LS, Alderman MH, Peterson K, Bertoni A, Basile JN. Rationale and design for the blood pressure intervention of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol. 2007;99(12A):44i–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Schwartz AV, Margolis KL, Sellmeyer DE, Vittinghoff E, Ambrosius WT, Bonds DE, Josse RG, Schnall AM, Simmons DL, Hue TF, Palermo L, Hamilton BP, Green JB, Atkinson HH, O’Connor PJ, Force RW, Bauer DC. Intensive glycemic control is not associated with fractures or falls in the ACCORD randomized trial. Diabetes Care. 2012;35(7):1525–31.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Gibson MJ, Andres RO, Isaacs B. The prevention of falls in later life. A report of the Kellogg International Work Group on the Prevention of Falls by the Elderly. Dan Med Bull. 1987;34(Suppl 4):1–24.Google Scholar
  14. 14.
    National Kidney Foundation Kidney Disease Outcomes Quality Initiative. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–246.Google Scholar
  15. 15.
    Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, Stoyanovsky V, Antikainen RL, Nikitin Y, Anderson C, Belhani A, Forette F, Rajkumar C, Thijs L, Banya W, Bulpitt CJ. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358(18):1887–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest. 2005;115(6):1651–8.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Scholz D, Schwille PO, Sigel A. Double-blind study with thiazide in recurrent calcium lithiasis. J Urol. 1982;128(5):903–7.PubMedGoogle Scholar
  18. 18.
    LaCroix AZ, Ott SM, Ichikawa L, Scholes D, Barlow WE. Low-dose hydrochlorothiazide and preservation of bone mineral density in older adults. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2000;133(7):516–26.PubMedCrossRefGoogle Scholar
  19. 19.
    Reid IR, Ames RW, Orr-Walker BJ, Clearwater JM, Horne AM, Evans MC, Murray MA, McNeil AR, Gamble GD. Hydrochlorothiazide reduces loss of cortical bone in normal postmenopausal women: a randomized controlled trial. Am J Med. 2000;109(5):362–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Solomon DH, Mogun H, Garneau K, Fischer MA. Risk of fractures in older adults using antihypertensive medications. J Bone Miner Res. 2011;26(7):1561–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of beta-blockers and risk of fractures. JAMA. 2004;292(11):1326–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Wiens M, Etminan M, Gill SS, Takkouche B. Effects of antihypertensive drug treatments on fracture outcomes: a meta-analysis of observational studies. J Intern Med. 2006;260(4):350–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Jones G, Nguyen T, Sambrook PN, Eisman JA. Thiazide diuretics and fractures: can meta-analysis help? J Bone Miner Res. 1995;10(1):106–11.PubMedGoogle Scholar
  24. 24.
    Aung K, Htay T. Thiazide diuretics and the risk of hip fracture. Cochrane Database Syst Rev. 2011;10, CD005185.PubMedGoogle Scholar
  25. 25.
    Rejnmark L, Vestergaard P, Mosekilde L. Reduced fracture risk in users of thiazide diuretics. Calcif Tissue Int. 2005;76(3):167–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Lemieux G. Treatment of idiopathic hypercalciuria with indapamide. CMAJ. 1986;135(2):119–21.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Borghi L, Elia G, Trapassi MR, Melloni E, Amato F, Barbarese F, Novarini A. Acute effect of indapamide on urine calcium excretion in nephrolithiasis and human essential hypertension. Pharmacology. 1988;36(5):348–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Ceylan K, Topal C, Erkoc R, Sayarlioglu H, Can S, Yilmaz Y, Dogan E, Algun E, Gonulalan H. Effect of indapamide on urinary calcium excretion in patients with and without urinary stone disease. Ann Pharmacother. 2005;39(6):1034–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Borghi L, Meschi T, Guerra A, Novarini A. Randomized prospective study of a nonthiazide diuretic, indapamide, in preventing calcium stone recurrences. J Cardiovasc Pharmacol. 1993;22(Suppl 6):S78–86.PubMedCrossRefGoogle Scholar
  30. 30.
    Lalande A, Roux S, Denne MA, Stanley ER, Schiavi P, Guez D, De Vernejoul MC. Indapamide, a thiazide-like diuretic, decreases bone resorption in vitro. J Bone Miner Res. 2001;16(2):361–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Meisinger C, Heier M, Lang O, Doring A. Beta-blocker use and risk of fractures in men and women from the general population: the MONICA/KORA Augsburg cohort study. Osteoporos Int. 2007;18(9):1189–95.PubMedCrossRefGoogle Scholar
  32. 32.
    Bonnet N, Gadois C, McCloskey E, Lemineur G, Lespessailles E, Courteix D, Benhamou CL. Protective effect of beta blockers in postmenopausal women: influence on fractures, bone density, micro and macroarchitecture. Bone. 2007;40(5):1209–16.PubMedCrossRefGoogle Scholar
  33. 33.
    Pasco JA, Henry MJ, Sanders KM, Kotowicz MA, Seeman E, Nicholson GC. Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res. 2004;19(1):19–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case–control study. J Hypertens. 2006;24(3):581–9.PubMedCrossRefGoogle Scholar
  35. 35.
    de Vries F, Pouwels S, Bracke M, Leufkens HG, Cooper C, Lammers JW, van Staa TP. Use of beta-2 agonists and risk of hip/femur fracture: a population-based case–control study. Pharmacoepidemiol Drug Saf. 2007;16(6):612–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Levasseur R, Dargent-Molina P, Sabatier JP, Marcelli C, Breart G. Beta-blocker use, bone mineral density, and fracture risk in older women: results from the Epidemiologie de l’Osteoporose prospective study. J Am Geriatr Soc. 2005;53(3):550–2.PubMedCrossRefGoogle Scholar
  37. 37.
    Reid IR, Gamble GD, Grey AB, Black DM, Ensrud KE, Browner WS, Bauer DC. Beta-Blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res. 2005;20(4):613–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Cappuccio FP, Meilahn E, Zmuda JM, Cauley JA. High blood pressure and bone-mineral loss in elderly white women: a prospective study. Study of Osteoporotic Fractures Research Group. Lancet. 1999;354(9183):971–5.PubMedCrossRefGoogle Scholar
  39. 39.
    McCarron DA, Pingree PA, Rubin RJ, Gaucher SM, Molitch M, Krutzik S. Enhanced parathyroid function in essential hypertension: a homeostatic response to a urinary calcium leak. Hypertension. 1980;2(2):162–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Vestergaard P, Rejnmark L, Mosekilde L. Hypertension is a risk factor for fractures. Calcif Tissue Int. 2009;84(2):103–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Berry SD, Zhu Y, Choi H, Kiel DP, Zhang Y. Diuretic initiation and the acute risk of hip fracture. Osteoporos Int. 2013;24(2):689–95.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Butt DA, Mamdani M, Austin PC, Tu K, Gomes T, Glazier RH. The risk of hip fracture after initiating antihypertensive drugs in the elderly. Arch Intern Med. 2012;19:1–6.Google Scholar
  43. 43.
    Hiitola P, Enlund H, Kettunen R, Sulkava R, Hartikainen S. Postural changes in blood pressure and the prevalence of orthostatic hypotension among home-dwelling elderly aged 75 years or older. J Hum Hypertens. 2009;23(1):33–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Wu JS, Yang YC, Lu FH, Wu CH, Chang CJ. Population-based study on the prevalence and correlates of orthostatic hypotension/hypertension and orthostatic dizziness. Hypertens Res. 2008;31(5):897–904.PubMedCrossRefGoogle Scholar
  45. 45.
    Verwoert GC, Mattace-Raso FU, Hofman A, Heeringa J, Stricker BH, Breteler MM, Witteman JC. Orthostatic hypotension and risk of cardiovascular disease in elderly people: the Rotterdam study. J Am Geriatr Soc. 2008;56(10):1816–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Kamaruzzaman S, Watt H, Carson C, Ebrahim S. The association between orthostatic hypotension and medication use in the British Women’s Heart and Health Study. Age Ageing. 2010;39(1):51–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Masaki KH, Schatz IJ, Burchfiel CM, Sharp DS, Chiu D, Foley D, Curb JD. Orthostatic hypotension predicts mortality in elderly men: the Honolulu Heart Program. Circulation. 1998;98(21):2290–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Luukinen H, Koski K, Laippala P, Airaksinen KE. Orthostatic hypotension and the risk of myocardial infarction in the home-dwelling elderly. J Intern Med. 2004;255(4):486–93.PubMedCrossRefGoogle Scholar
  49. 49.
    Fedorowski A, Stavenow L, Hedblad B, Berglund G, Nilsson PM, Melander O. Orthostatic hypotension predicts all-cause mortality and coronary events in middle-aged individuals (The Malmo Preventive Project). Eur Heart J. 2010;31(1):85–91.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Wu JS, Yang YC, Lu FH, Wu CH, Wang RH, Chang CJ. Population-based study on the prevalence and risk factors of orthostatic hypotension in subjects with pre-diabetes and diabetes. Diabetes Care. 2009;32(1):69–74.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Maurer MS, Cohen S, Cheng H. The degree and timing of orthostatic blood pressure changes in relation to falls in nursing home residents. J Am Med Dir Assoc. 2004;5(4):233–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Ooi WL, Hossain M, Lipsitz LA. The association between orthostatic hypotension and recurrent falls in nursing home residents. Am J Med. 2000;108(2):106–11.PubMedCrossRefGoogle Scholar
  53. 53.
    Gangavati A, Hajjar I, Quach L, Jones RN, Kiely DK, Gagnon P, Lipsitz LA. Hypertension, orthostatic hypotension, and the risk of falls in a community-dwelling elderly population: the maintenance of balance, independent living, intellect, and zest in the elderly of Boston study. J Am Geriatr Soc. 2011;59(3):383–9.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Gribbin J, Hubbard R, Gladman J, Smith C, Lewis S. Risk of falls associated with antihypertensive medication: self-controlled case series. Pharmacoepidemiol Drug Saf. 2011;20(8):879–84.PubMedCrossRefGoogle Scholar
  55. 55.
    Tinetti ME, Han L, Lee DS, McAvay GJ, Peduzzi P, Gross CP, Zhou B, Lin H. Antihypertensive medications and serious fall injuries in a nationally representative sample of older adults. JAMA Intern Med. 2014;174(4):588–95.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Leipzig RM, Cumming RG, Tinetti ME. Drugs and falls in older people: a systematic review and meta-analysis: II. Cardiac and analgesic drugs. J Am Geriatr Soc. 1999;47(1):40–50.PubMedGoogle Scholar
  57. 57.
    Woolcott JC, Richardson KJ, Wiens MO, Patel B, Marin J, Khan KM, Marra CA. Meta-analysis of the impact of 9 medication classes on falls in elderly persons. Arch Intern Med. 2009;169(21):1952–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Tinetti ME, Speechley M. Prevention of falls among the elderly. N Engl J Med. 1989;320(16):1055–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Talbot LA, Musiol RJ, Witham EK, Metter EJ. Falls in young, middle-aged and older community dwelling adults: perceived cause, environmental factors and injury. BMC Public Health. 2005;5:86.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Melton LJ 3rd, Crowson CS, O’Fallon WM. Fracture incidence in Olmsted County, Minnesota: comparison of urban with rural rates and changes in urban rates over time. Osteoporos Int. 1999;9(1):29–37.PubMedCrossRefGoogle Scholar

Copyright information

© Society of General Internal Medicine 2014

Authors and Affiliations

  • Karen L. Margolis
    • 1
  • Lisa Palermo
    • 2
  • Eric Vittinghoff
    • 2
  • Gregory W. Evans
    • 3
  • Hal H. Atkinson
    • 4
  • Bruce P. Hamilton
    • 5
  • Robert G. Josse
    • 6
  • Patrick J. O’Connor
    • 1
  • Debra L. Simmons
    • 7
  • Margaret Tiktin
    • 8
  • Ann V. Schwartz
    • 2
  1. 1.HealthPartners Institute for Education and ResearchMinneapolisUSA
  2. 2.University of California, San FranciscoSan FranciscoUSA
  3. 3.Wake Forest School of MedicineWinston-SalemUSA
  4. 4.Wake Forest School of MedicineWinston-SalemUSA
  5. 5.Baltimore VA Medical CenterUniversity of Maryland, School of MedicineBaltimoreUSA
  6. 6.Endocrinology and MetabolismSt. Michael’s Hospital, University of TorontoTorontoCanada
  7. 7.University of Utah, School of MedicineSalt Lake CityUSA
  8. 8.Case Western ReserveClevelandUSA

Personalised recommendations