Journal of General Internal Medicine

, Volume 25, Issue 12, pp 1323–1329 | Cite as

How to Reduce the Effect of Framing on Messages About Health

  • Rocio Garcia-RetameroEmail author
  • Mirta Galesic
Original Research



Patients must be informed about risks before any treatment can be implemented. Yet serious problems in communicating these risks occur because of framing effects.


To investigate the effects of different information frames when communicating health risks to people with high and low numeracy and determine whether these effects can be countered or eliminated by using different types of visual displays (i.e., icon arrays, horizontal bars, vertical bars, or pies).


Experiment on probabilistic, nationally representative US (n = 492) and German (n = 495) samples, conducted in summer 2008.


Participants’ risk perceptions of the medical risk expressed in positive (i.e., chances of surviving after surgery) and negative (i.e., chances of dying after surgery) terms.


Although low‐numeracy people are more susceptible to framing than those with high numeracy, use of visual aids is an effective method to eliminate its effects. However, not all visual aids were equally effective: pie charts and vertical and horizontal bars almost completely removed the effect of framing. Icon arrays, however, led to a smaller decrease in the framing effect.


Difficulties with understanding numerical information often do not reside in the mind, but in the representation of the problem.


risk communication risk perception numeracy framing visual aids medical decision making 



We thank Anita Todd for editing the manuscript. This study is part of two projects, “Helping people with low numeracy to understand medical information,” funded by the Foundation for Informed Medical Decision Making (US) and the Max Planck Society (Germany), and “How to improve understanding of risks about health (PSI2008-02019),” funded by the Ministerio de Ciencia e Innovación (Spain).

Conflict of Interests

None disclosed.


  1. 1.
    Garcia-Retamero R, Galesic M. Risk communication and medical decision making: a cross-cultural perspective. Springer, Berlin-Heidelberg, in press.Google Scholar
  2. 2.
    Edwards A, Elwyn G, Covey J, Matthews E, Pill R. Presenting risk information—a review of the effects of “framing” and other manipulations on patient outcomes. J Health Commun. 2001;6:61–82.CrossRefPubMedGoogle Scholar
  3. 3.
    Kuhberger A. The influence of framing on risky decisions: a meta-analysis. Organ Behav Hum Decis Process. 1998;75:23–55.CrossRefPubMedGoogle Scholar
  4. 4.
    Rothman AJ, Salovey P. Shaping perceptions to motivate healthy behaviour: the role of message framing. Psychol Bull. 1997;121:3–19.CrossRefPubMedGoogle Scholar
  5. 5.
    Wilson DK, Purdon SE, Wallston KA. Compliance to health recommendations: a theoretical overview of message framing. Health Educ Res. 1988;3:161–71.CrossRefGoogle Scholar
  6. 6.
    Salovey P, Williams-Piehota P. Field experiments in social psychology: message framing and the promotion of health protective behaviors. Am Behav Sci. 2004;47:488–505.CrossRefGoogle Scholar
  7. 7.
    Kahneman D, Tversky A. Prospect theory: an analysis of decision making under risk. Econometrica. 1979;6:621–30.Google Scholar
  8. 8.
    Kahneman D, Tversky A. The psychology of preferences. Sci Am. 1982;46:160–73.CrossRefGoogle Scholar
  9. 9.
    Tversky A, Kahneman D. The framing of decisions and the psychology of choice. Science. 1981;211:453–8.CrossRefPubMedGoogle Scholar
  10. 10.
    McNeil BJ, Pauker SG, Sox HC, Tversky A. On the elicitation of preferences for alternative therapies. N Engl J Med. 1982;306:1259–62.CrossRefPubMedGoogle Scholar
  11. 11.
    Edwards A, Elwyn G, Mulley A. Explaining risks: turning numerical data into meaningful pictures. BMJ. 2002;324:827–30.CrossRefPubMedGoogle Scholar
  12. 12.
    Des Jarlais DC, Sloboda Z, Friedman SR, Tempalski B, McKnight C, Braine N. Diffusion of the D.A.R.E. and syringe exchange programs. Am J Public Health. 2006;96:1354–58.CrossRefPubMedGoogle Scholar
  13. 13.
    Rothman AJ, Martino SC, Bedell BT, Detweiler JB, Salovey P. The systematic influence of gain- and loss-framed messages on interest in and use of different types of health behavior. Pers Soc Psychol Bull. 1999;25:1355–69.CrossRefGoogle Scholar
  14. 14.
    Rothman AJ, Wlaschin JT, Bartels RD, Latimer A, Salovey P. How persons and situations regulate message framing effects: the study of health behavior. In: Eliot A, ed. Handbook of Approach and Avoidance Motivation. Mahwah, NJ: LEA; 2008:475–86.Google Scholar
  15. 15.
    Rothman AJ, Bartels RD, Wlaschin J, Salovey P. The strategic use of gain- and loss-framed messages to promote healthy behavior: how theory can inform practice. J Commun. 2006;56:S202–20.CrossRefGoogle Scholar
  16. 16.
    Jones LW, Sinclair RC, Courneya KS. The effects of source credibility and message framing on exercise intentions, behaviors, and attitudes: an integration of the elaboration likelihood model and Prospect Theory. J Appl Soc Psychol. 2003;33:179–96.CrossRefGoogle Scholar
  17. 17.
    Gerend MA, Cullen M. Effects of message framing and temporal context on college student drinking behavior. J Exp Soc Psychol. 2008;44:1167–73.CrossRefGoogle Scholar
  18. 18.
    Christophersen ER, Gyulay JE. Parental compliance with car seat usage: a positive approach with long term follow-up. J Pediatr Psychol. 1981;6:301–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Treiber FA. A comparison of positive and negative consequences approaches upon car restraint usage. J Pediatr Psychol. 1986;11:15–24.CrossRefPubMedGoogle Scholar
  20. 20.
    Rothman AJ, Salovey P, Antone C, Keough K, Martin C. The influence of message framing on health behavior. J Exp Soc Psychol. 1993;29:408–33.CrossRefGoogle Scholar
  21. 21.
    Detweiler JB, Bedell BT, Salovey P, Pronin E, Rothman AJ. Message framing and sunscreen use: gain-framed messages motivate beach-goers. Health Psychol. 1999;18:189–96.CrossRefPubMedGoogle Scholar
  22. 22.
    Linville PW, Fischer GW, Fischhoff B. AIDS risk perceptions and decision biases. In: Pryor JB, Reeder GD, eds. The Social Psychology of HIV Infection. Hillsdale, NJ: Erlbaum; 1993:421–432.Google Scholar
  23. 23.
    Meyerowitz BE, Chaiken S. The effect of message framing on breast self-examination attitudes, intentions, and behavior. J Pers Soc Psychol. 1987;52:500–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Williams T, Clarke V, Borland R. Effects of message framing on breast-cancer-related beliefs and behaviors: the role of mediating factors. J Appl Soc Psychol. 2001;31:925–50.CrossRefGoogle Scholar
  25. 25.
    Abood DA, Black DR, Coster DC. Loss-framed minimal intervention increases mammography use. Womens Health Issues. 2005;15:258–64.CrossRefPubMedGoogle Scholar
  26. 26.
    Abood DA, Coster DC, Mullis AK, Black DR. Evaluation of a “loss-framed” minimal intervention to increase mammography utilization among medically un- and under-insured women. Cancer Detect Prev. 2002;26:394–400.CrossRefPubMedGoogle Scholar
  27. 27.
    Banks SM, Salovey P, Greener S, et al. The effects of message framing on mammography utilization. Health Psychol. 1995;14:178–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Cox D, Cox AD. Communicating the consequences of early detection: the role of evidence and framing. J Marketing. 2001;65:91–103.CrossRefGoogle Scholar
  29. 29.
    Finney LJ, Iannotti RJ. Message framing and mammography screening: a theory-driven intervention. Behav Med. 2002;28:5–14.CrossRefPubMedGoogle Scholar
  30. 30.
    Schneider TR, Salovey P, Apanovitch AM, et al. The effects of message framing and ethnic targeting on mammography use among low-income women. Health Psychol. 2001;20:256–66.CrossRefPubMedGoogle Scholar
  31. 31.
    Maheswaran D, Meyers-Levy J. The influence of message framing and issue involvement. J Marketing Res. 1990;27:361–7.CrossRefGoogle Scholar
  32. 32.
    Apanovitch AM, McCarthy D, Salovey P. Using message framing to motivate HIV testing among low-income, ethnic minority women. Health Psychol. 2003;22:60–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Kalichman SC, Coley B. Context framing to enhance HIV-antibody-testing messages targeted to African American women. Health Psychol. 1995;14:247–54.CrossRefPubMedGoogle Scholar
  34. 34.
    Block LG, Keller PA. When to accentuate the negative: the effects of perceived efficacy and message framing on intentions to perform a health-related behavior. J Marketing Res. 1995;32:192–203.CrossRefGoogle Scholar
  35. 35.
    Marteau TM. Framing of information: its influence upon decisions of doctors and patients. Br J Soc Psychol. 1989;28:89–94.PubMedGoogle Scholar
  36. 36.
    Haward MF, Murphy RO, Lorenz JM. Message framing and perinatal decisions. Pediatrics. 2008;122:109–118.CrossRefPubMedGoogle Scholar
  37. 37.
    Wilson DK, Kaplan RM, Schneiderman LJ. Framing of decisions and selections of alternatives in health care. Soc Behav. 1987;2:51–9.Google Scholar
  38. 38.
    Levin IP, Schnittjer SK, Thee SL. Information framing effects in social and personal decisions. J Exp Soc Psychol. 1988;24:520–9.CrossRefGoogle Scholar
  39. 39.
    Mann TL, Sherman DK, Updegraff JA. Dispositional motivations and message framing: a test of the congruency hypothesis in college students. Health Psychol. 2004;23:330–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Sherman DK, Updegraff JA, Mann T. Improving oral health behavior. J Am Dent Assoc. 2008;139:1382–7.PubMedGoogle Scholar
  41. 41.
    Latimer AE, Rivers SE, Rench TA, et al. A field experiment testing the utility of regulatory fit messages for promoting physical activity. J Exp Soc Psychol. 2008;44:826–32.CrossRefPubMedGoogle Scholar
  42. 42.
    Armstrong K, Schwartz JS, Fitzgerald G, Putt M, Ubel PA. Effect of framing as gain versus loss on understanding and hypothetical treatment choices: survival and mortality curves. Med Decis Making. 2002;22:76–83.PubMedGoogle Scholar
  43. 43.
    Ancker JS, Kaufman D. Rethinking health numeracy: a multidisciplinary literature review. J Am Med Inform Assoc. 2007;14:713–21.CrossRefPubMedGoogle Scholar
  44. 44.
    Reyna VR, Nelson WL, Han P, Dieckmann NF. How numeracy influences risk comprehension and medical decision making. Psychol Bull. 2009;135:943–73.CrossRefPubMedGoogle Scholar
  45. 45.
    Galesic M, Garcia-Retamero R. Statistical numeracy for health: A cross-cultural comparison with probabilistic national samples. Arch Intern Med. 2010;170:462–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Fagerlin A, Ubel PA, Smith DM, Zikmund-Fisher BJ. Making numbers matter: present and future research in risk communication. Am J Health Behav. 2007;31:47–56.Google Scholar
  47. 47.
    Peters E, Västfjäll D, Slovic P, Mertz CK, Mazzocco K, Dickert S. Numeracy and decision making. Psychol Sci. 2006;17:407–13.CrossRefPubMedGoogle Scholar
  48. 48.
    Lerman C, Ross E, Boyce A, et al. The impact of mailing psychoeducational materials to women with abnormal mammograms. Am J Public Health. 1992;82:729–30.CrossRefPubMedGoogle Scholar
  49. 49.
    Cormier O’Connor AM, Boyd NF, Tritchler DL, Kriukov Y, Sutherland H, Till JE. Eliciting preferences for alternative cancer drug treatments: the influence of framing, medium, and rater variables. Med Decis Making. 1985;5:453–63.CrossRefGoogle Scholar
  50. 50.
    Llewellyn-Thomas HA, McGreal MJ, Thiel EC. Cancer patients’ decision making and trial-entry preferences: the effects of “framing” information about short-term toxicity and long-term survival. Med Decis Making. 1995;15:4–12.CrossRefPubMedGoogle Scholar
  51. 51.
    O’Connor AM, Pennie RA, Dales RE. Framing effects on expectations, decisions, and side effects experienced: the case of influenza immunization [published erratum appears in J Clin Epidemiol. 1997;50:747−8]. J Clin Epidemiol. 1996;49:1271–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Siminoff LA, Fetting JH. Effects of outcome framing on treatment decisions in the real world: impact of framing on adjuvant breast cancer decisions. Med Decis Making. 1989;9:262–71.CrossRefPubMedGoogle Scholar
  53. 53.
    Steffen VJ, Sternberg L, Teegarden LA, Shepherd K. Practice and persuasive frame: effects on beliefs, intention, and performance of a cancer self-examination. J Appl Soc Psychol. 1994;24:897–925.CrossRefGoogle Scholar
  54. 54.
    Tykocinski OE, Higgins T, Chaiken S. Message framing, self-discrepancies, and yielding to persuasive messages: the motivational significance of psychological situations. Pers Soc Psychol Bull. 1994;20:107–15.CrossRefGoogle Scholar
  55. 55.
    O’Keefe DJ, Jensen JD. The relative persuasiveness of gain-framed and loss-framed messages for encouraging disease prevention behaviors: a meta-analytic review. J Health Commun. 2007;12:623–44.CrossRefPubMedGoogle Scholar
  56. 56.
    O’Keefe DJ, Jensen JD. The relative persuasiveness of gain-framed and loss-framed messages for encouraging disease detection behaviors: a meta-analytic review. J Commun. 2009;59:296–316.CrossRefGoogle Scholar
  57. 57.
    Edwards AGK, Pill RM, Stott NCH. Communicating risk: use of standard terms is unlikely to result in standard communication. BMJ. 1996;313:1483.PubMedGoogle Scholar
  58. 58.
    Redelmeier DA. The cognitive psychology of missed diagnoses. Ann Intern Med. 2005;142:115–20.PubMedGoogle Scholar
  59. 59.
    Almashat S, Ayotte B, Edelstein B, Margrett J. Framing effect debiasing in medical decision making. Patient Educ Couns. 2008;71:102–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Ancker JS, Senathirajah Y, Kukafka R, Starren JB. Design features of graphs in health risk communication: a systematic review. J Am Med Inform Assoc. 2006;13:608–18.CrossRefPubMedGoogle Scholar
  61. 61.
    Galesic M, Garcia-Retamero R, Gigerenzer G. Using icon arrays to communicate medical risks: overcoming low numeracy. Health Psychol. 2009;28:210–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Galesic M, Garcia-Retamero R. Graph literacy: a cross-cultural comparison. Med Decis Making, in press, doi: 10.1177/0272989X10373805.
  63. 63.
    Lipkus IM. Numeric, verbal, and visual formats of conveying health risks: suggested best practices and future recommendations. Med Decis Making. 2007;27:696–713.CrossRefPubMedGoogle Scholar
  64. 64.
    Lipkus IM, Hollands JG. The visual communication of risk. J Natl Cancer Inst Monogr. 1999;25:149–63.PubMedGoogle Scholar
  65. 65.
    Paling J. Strategies to help patients understand risks. BMJ. 2003;327:745–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Volk RJ, Spann SJ. Decision-aids for prostate cancer screening. J Fam Pract. 2000;49:425–7.PubMedGoogle Scholar
  67. 67.
    Timmermans DRM, Ockhuysen-Vermey CF, Henneman L. Presenting health risk information in different formats: the effect on participants’ cognitive and emotional evaluation and decisions. Patient Educ Couns. 2008;73:443–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Waters EA, Weinstein ND, Colditz GA, Emmons KM. Reducing aversion to side effects in preventive medical treatment decisions. J Exp Psychol Appl. 2007;13:11–21.CrossRefPubMedGoogle Scholar
  69. 69.
    Fagerlin A, Wang C, Ubel PA. Reducing the influence of anecdotal reasoning on people’s health care decisions: is a picture worth a thousand statistics? Med Decis Making. 2005;25:398–405.CrossRefPubMedGoogle Scholar
  70. 70.
    Garcia-Retamero R, Galesic M. Communicating treatment risk reduction to people with low numeracy skills: A cross-cultural comparison. Am J Public Health. 2009;99:2196–202.CrossRefPubMedGoogle Scholar
  71. 71.
    Garcia-Retamero R, Galesic M, Gigerenzer G. Do icon arrays help reduce denominator neglect? Med Decis Making, in press. doi: 10.1177/0272989X10369000.
  72. 72.
    Goodyear-Smith F, Arroll B, Chan L, Jackson R, Wells S, Kenealy T. Patients prefer pictures to numbers to express cardiovascular benefit from treatment. Ann Fam Med. 2008;6:213–7.CrossRefPubMedGoogle Scholar
  73. 73.
    Garcia-Retamero R, Galesic M, Gigerenzer G. Enhancing understanding and recall of quantitative information about medical risks: a cross-cultural comparison between Germany and Spain. Spanish J Psychol. in press.Google Scholar
  74. 74.
    Schirillo JA, Stone ER. The greater ability of graphical versus numerical displays to increase risk avoidance involves a common mechanism. Risk Anal. 2005;25:555–66.CrossRefPubMedGoogle Scholar
  75. 75.
    Garcia-Retamero R, Galesic M. Who profits from visual aids: overcoming challenges in people’s understanding of risks. Soc Sci Med. 2010;70:1019–25.CrossRefPubMedGoogle Scholar
  76. 76.
    Hawley ST, Zikmund-Fisher B, Ubel P, Jancovic A, Lucas T, Fagerlin A. The impact of the format of graphical representation on health-related knowledge and treatment choices. Patient Educ Couns. 2008;73:448–55.CrossRefPubMedGoogle Scholar
  77. 77.
    Baker L, Wagner TH, Singer S, Bundorf MK. Use of the Internet and e-mail for health care information: results from a national survey. JAMA. 2003;289:2400–6.CrossRefPubMedGoogle Scholar
  78. 78.
    Jacoby WG. Value choices and American public opinion. Am J Pol Sci. 2006;50:706–23.CrossRefGoogle Scholar
  79. 79.
    Lerner JS, Gonzalez RM, Small DA, Fischoff B. Effects of fear and anger on perceived risks of terrorism: a national field experiment. Psychol Sci. 2003;14:144–50.CrossRefPubMedGoogle Scholar
  80. 80.
    Miller JD, Scott EC, Okamoto S. Public acceptance of evolution. Science. 2006;313:765–6.CrossRefPubMedGoogle Scholar
  81. 81.
    Schlenger WE, Caddell JM, Ebert L, et al. Psychological reactions to terrorist attacks: findings from the national study of Americans’ reactions to September 11. JAMA. 2002;288:581–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Chang L, Krosnick JA. National surveys via RDD telephone interviewing versus the Internet: comparing sample representativeness and response quality. Public Opin Q. 2009;73:641–8.CrossRefGoogle Scholar
  83. 83.
    Schwartz LM, Woloshin S, Black WC, Welch HG. The role of numeracy in understanding the benefit of screening mammography. Ann Intern Med. 1997;127:966–72.PubMedGoogle Scholar
  84. 84.
    Lipkus IM, Samsa G, Rimer BK. General performance on a numeracy scale among highly educated samples. Med Decis Making. 2001;21:37–44.CrossRefPubMedGoogle Scholar
  85. 85.
    Schwartz LM, Woloshin S, Welch G. Can patients interpret health information? An assessment of the medical data interpretation test. Med Decis Making. 2005;25:290–300.CrossRefPubMedGoogle Scholar
  86. 86.
    Stone ER, Yates JF, Parker AM. Effects of numerical and graphical displays on professed risk-taking behavior. J Exp Psychol Appl. 1997;3:243–56.CrossRefGoogle Scholar
  87. 87.
    Woloshin S, Schwartz LM, Black WC, Welch HG. Women’s perceptions of breast cancer risk: how you ask matters. Med Decis Making. 1999;19:221–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Davids SL, Schapira MM, McAuliffe TL, Nattinger AB. Predictors of pessimistic breast cancer risk perceptions in a primary care population. J Gen Intern Med. 2004;19:310–5.CrossRefPubMedGoogle Scholar
  89. 89.
    Reyna VF, Brainerd CJ. The importance of mathematics in health and human judgment: numeracy, risk communication, and medical decision making. Learn Individ Differ. 2007;17:147–59.CrossRefGoogle Scholar
  90. 90.
    Reyna VF, Brainerd CJ. Numeracy, ratio bias, and denominator neglect in judgments of risk and probability. Learn Individ Differ. 2008;18:89–107.CrossRefGoogle Scholar
  91. 91.
    Garcia-Retamero R, Heuristics GM. In: Kattan MW, ed. The Encyclopedia of Medical Decision Making. Thousand Oaks, CA: SAGE; 2009:596–9.Google Scholar
  92. 92.
    Gigerenzer G, Gaissmaier W, Kurz-Milcke E, Schwartz LM, Woloshin S. Helping doctors and patients make sense of health statistics. Psychol Sci Public Interest. 2008;8:53–96.Google Scholar
  93. 93.
    Gigerenzer G, Hoffrage U. How to improve Bayesian reasoning without instruction: frequency formats. Psychol Rev. 1995;102:684–704.CrossRefGoogle Scholar
  94. 94.
    Covey JA. Meta-analysis of the effects of presenting treatment benefits in different formats. Med Decis Making. 2007;27:638–54.CrossRefPubMedGoogle Scholar
  95. 95.
    Gigerenzer G, Hertwig R, van den Broek E, Fasolo B, Katsikopoulos K. “A 30% chance of rain tomorrow”: How does the public understand probabilistic weather forecasts? Risk Anal. 2005;25:623–9.CrossRefPubMedGoogle Scholar
  96. 96.
    Reyna VF, Brainerd CJ. Fuzzy-trace theory and framing effects in choice: gist extraction, truncation, and conversion. J Behav Decis Making. 1991;4:249–62.CrossRefGoogle Scholar
  97. 97.
    Garcia-Retamero R, Cokely E. Effective communication of risks to young adults: using message framing and visual aids to increase condom use and STD screening. Manuscript under review.Google Scholar
  98. 98.
    Levin IP, Schneider SL, Gaeth GJ. All frames are not created equal: a typology and critical analysis of framing effects. Organ Behav Hum Decis Process. 1998;76:149–88.CrossRefPubMedGoogle Scholar
  99. 99.
    Bruine de Bruin W, Fischhoff B. The effect of question format on measured HIV/AIDS knowledge: detention center teens, high school students, and adults. AIDS Educ Prev. 2000;12:187–98.Google Scholar
  100. 100.
    Hsee CK, Weber EU. A fundamental prediction error: self-other discrepancies in risk preference. J Exp Psych. 1997;126:45–53.Google Scholar

Copyright information

© Society of General Internal Medicine 2010

Authors and Affiliations

  1. 1.Center for Adaptive Behavior and Cognition, Max Planck Institute for Human DevelopmentBerlinGermany
  2. 2.Department of Experimental PsychologyUniversity of GranadaGranadaSpain
  3. 3.Facultad de PsicologíaUniversidad de Granada, Campus Universitario de Cartuja s/nGranadaSpain

Personalised recommendations