Journal of General Internal Medicine

, Volume 23, Issue 5, pp 528–535 | Cite as

Random Plasma Glucose in Serendipitous Screening for Glucose Intolerance: Screening for Impaired Glucose Tolerance Study 2

  • David C. Ziemer
  • Paul Kolm
  • Jovonne K. Foster
  • William S. Weintraub
  • Viola Vaccarino
  • Mary K. Rhee
  • Rincy M. Varughese
  • Circe W. Tsui
  • David D. Koch
  • Jennifer G. Twombly
  • K. M. Venkat Narayan
  • Lawrence S. Phillips
Original Article



With positive results from diabetes prevention studies, there is interest in convenient ways to incorporate screening for glucose intolerance into routine care and to limit the need for fasting diagnostic tests.


The aim of this study is to determine whether random plasma glucose (RPG) could be used to screen for glucose intolerance.


This is a cross-sectional study.


The participants of this study include a voluntary sample of 990 adults not known to have diabetes.


RPG was measured, and each subject had a 75-g oral glucose tolerance test several weeks later. Glucose intolerance targets included diabetes, impaired glucose tolerance (IGT), and impaired fasting glucose110 (IFG110; fasting glucose, 110–125 mg/dl, and 2 h glucose < 140 mg/dl). Screening performance was measured by area under receiver operating characteristic curves (AROC).


Mean age was 48 years, and body mass index (BMI) was 30.4 kg/m2; 66% were women, and 52% were black; 5.1% had previously unrecognized diabetes, and 24.0% had any “high-risk” glucose intolerance (diabetes or IGT or IFG110). The AROC was 0.80 (95% CI 0.74–0.86) for RPG to identify diabetes and 0.72 (0.68–0.75) to identify any glucose intolerance, both highly significant (p < 0.001). Screening performance was generally consistent at different times of the day, regardless of meal status, and across a range of risk factors such as age, BMI, high density lipoprotein cholesterol, triglycerides, and blood pressure.


RPG values should be considered by health care providers to be an opportunistic initial screening test and used to prompt further evaluation of patients at risk of glucose intolerance. Such “serendipitous screening” could help to identify unrecognized diabetes and prediabetes.


type 2 diabetes prediabetes impaired glucose intolerance impaired fasting glucose screening 



Atherosclerosis Risk in Communities


National Health and Nutrition Examination Survey III


any glucose intolerance110 (dysglycemia)


type 2 diabetes mellitus




area under the ROC curve


impaired glucose tolerance


impaired fasting glucose

IFG110 or IFG110–125

IFG with fasting plasma glucose 110–125 mg/dl


type 2 diabetes or IGT or IFG110


World Health Organization


National Cholesterol Education Program


high density lipoprotein



This work was supported in part by DK07298, DK062668, RR017643, DK066204, and RR00039. We thank Jane Caudle, Jack Kaufman, Eileen Osinski, Elizabeth Barrera, Jade Irving, and Aisha Bobcombe for their assistance. Portions of this work were presented at the Scientific Sessions of the American Diabetes Association in Washington, DC (2006).

Conflict of interest Statement

None disclosed.


  1. 1.
    Narayan KM, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ. Impact of recent increase in incidence on future diabetes burden: U.S., 2005–2050. Diabetes Care. 2006;29:2114–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Harris MI. Diabetes in America: epidemiology and scope of the problem. Diabetes Care. 1998;21:C11–4.PubMedGoogle Scholar
  3. 3.
    Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. JAMA. 2003;290:1884–90.PubMedCrossRefGoogle Scholar
  4. 4.
    American Diabetes Association. Economic costs of diabetes in the U.S. in 2002. Diabetes Care. 2003;26:917–32.CrossRefGoogle Scholar
  5. 5.
    Brown JB, Nichols GA, Glauber HS, Bakst AW. Type 2 diabetes: incremental medical care costs during the first 8 years after diagnosis. Diabetes Care. 1999;22:1116–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Harris MI, Klein R, Welborn TA, Knuiman MW. Onset of NIDDM occurs at least 4–7 yr before clinical diagnosis. Diabetes Care. 1992;15:815–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Thompson TJ, Engelgau MM, Hegazy M, Ali MA, Sous ES, Badran A, et al. The onset of NIDDM and its relationship to clinical diagnosis in Egyptian adults. Diabet Med. 1996;13:337–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Kohner EM, Aldington SJ, Stratton IM, Manley SE, Holman RR, Matthews DR, et al. United Kingdom Prospective Diabetes Study, 30: diabetic retinopathy at diagnosis of non-insulin-dependent diabetes mellitus and associated risk factors. Arch Ophthalmol. 2000;116:297–303.Google Scholar
  9. 9.
    Goldschmid MG, Domin WS, Ziemer DC, Gallina DL, Phillips LS. Diabetes in Urban African-Americans. II. High prevalence of microalbuminuria and nephropathy in African-Americans with diabetes. Diabetes Care. 1995;18:955–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Herman WH, Hoerger TJ, Brandle M, Hicks K, Sorensen S, Zhang P, et al. The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med. 2005;142:323–32.PubMedGoogle Scholar
  11. 11.
    UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.CrossRefGoogle Scholar
  12. 12.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA. 2004;291:335–42.PubMedCrossRefGoogle Scholar
  14. 14.
    Saaddine JB, Cadwell B, Gregg EW, Engelgau MM, Vinicor F, Imperatore G, et al. Improvements in diabetes processes of care and intermediate outcomes: United States, 1988–2002. Ann Intern Med. 2006;144:465–74.PubMedGoogle Scholar
  15. 15.
    Nichols GA, Alexander CM, Girman CJ, Kamal-Bahl SJ, Brown JB. Treatment escalation and rise in HbA1c following successful initial metformin therapy. Diabetes Care. 2006;29:504–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.CrossRefGoogle Scholar
  17. 17.
    Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dinccag N, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368:1096–105.PubMedCrossRefGoogle Scholar
  18. 18.
    American Diabetes Association, NIH/NIDDK. The prevention or delay of type 2 diabetes. Diab Care. 2002;25:742–9.CrossRefGoogle Scholar
  19. 19.
    Ealovega MW, Tabaei BP, Brandle M, Burke R, Herman WH. Opportunistic screening for diabetes in routine clinical practice. Diabetes Care. 2004;27:9–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Leiter LA, Barr A, Belanger A, Lubin S, Ross SA, Tildesley HD, et al. Diabetes screening in Canada (DIASCAN) study: prevalence of undiagnosed diabetes and glucose intolerance in family physician offices. Diabetes Care. 2001;24:1038–43.PubMedCrossRefGoogle Scholar
  21. 21.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2005;28(Suppl 1):S37–42.CrossRefGoogle Scholar
  22. 22.
    American Heart Association. = 4756. Accessed 10 January 2008.
  23. 23.
    Sorkin JD, Muller DC, Fleg JL, Andres R. The relation of fasting and 2-h postchallenge plasma glucose concentrations to mortality: data from the Baltimore Longitudinal Study of Aging with a critical review of the literature. Diabetes Care. 2005;28:2626–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Kanaya AM, Herrington D, Vittinghoff E, Lin F, Bittner V, Cauley JA, et al. Impaired fasting glucose and cardiovascular outcomes in postmenopausal women with coronary artery disease. Ann Intern Med. 2005;142:813–20.PubMedGoogle Scholar
  25. 25.
    Harrell FE Jr. Regression modeling strategies with applications to linear models, logistic regression and survival analysis. New York: Springer; 2001.Google Scholar
  26. 26.
    CDC Diabetes Cost-Effectiveness Study Group. The cost-effectiveness of screening for type 2 diabetes. JAMA. 1998;280:1757–63.CrossRefGoogle Scholar
  27. 27.
    Shavelle DM, Budoff MJ, Lamont DH, Shavelle RM, Kennedy JM, Brundage BH. Exercise testing and electron beam computed tomography in the evaluation of coronary artery disease. J Am Coll Cardiol. 2000;36:32–8.PubMedCrossRefGoogle Scholar
  28. 28.
    West KM, Kalbfleisch JM. Sensitivity and specificity of five screening tests for diabetes in ten countries. Diabetes. 1971;20:289–96.PubMedGoogle Scholar
  29. 29.
    Hilton DJ, Welborn TA, O’Rourke PK, Reid CM. Forget to fast. Diabetes Care. 2002;25:2122.CrossRefGoogle Scholar
  30. 30.
    Welborn TA, Reid CM, Marriott G. Australian Diabetes Screening Study: impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Metabolism. 1997;46:35–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Johnson SL, Tabaei BP, Herman WH. The efficacy and cost of alternative strategies for systematic screening for type 2 diabetes in the U.S. population 45–74 years of age. Diabetes Care. 2005;28:307–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang P, Engelgau MM, Valdez R, Cadwell B, Benjamin SM, Narayan KMV. Efficient cutoff points for three screening tests for detecting undiagnosed diabetes and pre-diabetes: an economic analysis. Diabetes Care. 2005;28:1321–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Rolka DB, Narayan KMV, Thompson TJ, Goldman D, Lindenmayer J, Alich K, et al. Performance of recommended screening tests for undiagnosed diabetes and dysglycemia. Diabetes Care. 2001;24:1899–903.PubMedCrossRefGoogle Scholar
  34. 34.
    Engelgau MM, Thompson TJ, Smith PJ, Herman WH, Aubert RE, Gunter EW, et al. Screening for diabetes mellitus in adults: the utility of random capillary blood glucose measurements. Diabetes Care. 1995;18:463–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Tabaei BP, Herman WH. A multivariate logistic regression equation to screen for diabetes: development and validation. Diabetes Care. 2002;25:1999–2003.PubMedCrossRefGoogle Scholar
  36. 36.
    Lindstrom J, Tuomilehto J. The diabetes risk score. Diabetes Care. 2003;26:725–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Glümer C, Carstensen B, Sandbæk A, Lauritzen T, Jørgensen T, Borch-Johnsen K. A Danish diabetes risk score for targeted screening: the Inter99 study. Diabetes Care. 2004;27:727–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Schulze MB, Hoffmann K, Boeing H, Linseisen J, Rohrmann S, Mohlig M, et al. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care. 2007;30:510–15.PubMedCrossRefGoogle Scholar
  39. 39.
    Spijkerman AMW, Yuyun MF, Griffin SJ, Dekker JM, Nijpels G, Wareham NJ. The performance of a risk score as a screening test for undiagnosed hyperglycemia in ethnic minority groups: data from the 1999 health survey for England. Diabetes Care. 2004;27:116–22.PubMedCrossRefGoogle Scholar
  40. 40.
    Franciosi M, De BG, Rossi MC, Sacco M, Belfiglio M, Pellegrini F, et al. Use of the diabetes risk score for opportunistic screening of undiagnosed diabetes and impaired glucose tolerance: the IGLOO (Impaired Glucose Tolerance and Long-Term Outcomes Observational) study. Diabetes Care. 2005;28:1187–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Aekplakorn W, Bunnag P, Woodward M, Sritara P, Cheepudomwit S, Yamwong S, et al. A risk score for predicting incident diabetes in the Thai population. Diabetes Care. 2006;29:1872–77.PubMedCrossRefGoogle Scholar
  42. 42.
    Ruige JB, De Neeling JND, Kostense PJ, Bouter LM, Heine RJ. Performance of an NIDDM screening questionnaire based on symptoms and risk factors. Diabetes Care. 1997;20:491–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Screening for Type 2 Diabetes Mellitus. AHRQ Systematic Evidence Review number 19. Accessed 28 February 2007.
  44. 44.
    Samuels TA, Cohen D, Brancati FL, Coresh J, Kao WHL. Delayed diagnosis of incident type 2 diabetes mellitus in the ARIC study. Am J Manag Care. 2006;12:717–24.PubMedGoogle Scholar
  45. 45.
    Thaler LM, El-Kebbi IM, Ziemer DC, Gallina DL, Dunbar VG, Phillips LS. High prevalence of albuminuria among African-Americans with short duration of diabetes. Diabetes Care. 1998;21:1576–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Henricsson M, Nyström L, Blohmé G, Östman J, Kullberg C, Svemsson M, et al. The incidence of retinopathy 10 years after diagnosis in young adult people with diabetes: results from the nationwide population-based Diabetes Incidence Study in Sweden (DISS). Diabetes Care. 2003;26:349–54.PubMedCrossRefGoogle Scholar
  47. 47.
    Smith NL, Barzilay JI, Kronmal R, Lumley T, Enquobahrie D, Psaty BM. New-onset diabetes and risk of all-cause and cardiovascular mortality: the Cardiovascular Health Study. Diabetes Care. 2006;29:2012–17.PubMedCrossRefGoogle Scholar
  48. 48.
    Hu FB, Stampfer MJ, Haffner SM, Solomon CG, Willett WC, Manson JE. Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care. 2002;25:1129–34.PubMedCrossRefGoogle Scholar
  49. 49.
    Gulliford MC, Charlton J, Latinovic R. Increased utilization of primary care 5 years before diagnosis of type 2 diabetes: a matched cohort study. Diabetes Care. 2005;28:47–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Nichols GA, Glauber HS, Brown JB. Type 2 diabetes: incremental medical care costs during the 8 years preceding diagnosis. Diabetes Care. 2000;23:1654–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Colagiuri S, Cull CA, Holman RR. Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes?: U.K. Prospective Diabetes Study 61. Diabetes Care. 2002;25:1410–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Festa A, Williams K, D’Agostino R Jr., Wagenknecht LE, Haffner SM. The natural course of {beta}-cell function in nondiabetic and diabetic individuals: The Insulin Resistance Atherosclerosis Study. Diabetes. 2006;55:1114–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Xiang AH, Wang C, Peters RK, Trigo E, Kjos SL, Buchanan TA. Coordinate changes in plasma glucose and pancreatic {beta}-cell function in Latino women at high risk for type 2 diabetes. Diabetes. 2006;55:1074–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Phillips LS, Branch WT Jr., Cook CB, Doyle JP, El-Kebbi IM, Gallina DL, et al. Clinical inertia. Ann Int Med. 2001;135:825–34.PubMedGoogle Scholar
  55. 55.
    Brown JB, Nichols GA. Slow response to loss of glycemic control in type 2 diabetes mellitus. Am J Manag Care. 2003;9:213–7.PubMedGoogle Scholar
  56. 56.
    Cook MN, Girman CJ, Stein PP, Alexander CM, Holman RR. Glycemic control continues to deteriorate after sulfonylureas are added to metformin among patients with type 2 diabetes. Diabetes Care. 2005;28:995–1000.PubMedCrossRefGoogle Scholar
  57. 57.
    Cowie CC, Harris MI, Eberhardt MS. Frequency and determinants of screening for diabetes in the U.S. Diabetes Care. 1994;17:1158–63.PubMedCrossRefGoogle Scholar
  58. 58.
    Clark HD, van Walraven C, Code C, Karovitch A, Keely E. Did publication of a clinical practice guideline recommendation to screen for type 2 diabetes in women with gestational diabetes change practice. Diabetes Care. 2003;26:265–8.PubMedCrossRefGoogle Scholar
  59. 59.
    CMS Clinical Laboratory Fee Schedule—December 1, 2006. Accessed 28 February 2007.
  60. 60.
    Zhang P, Engelgau MM, Valdez , Benjamin SM, Cadwell B, Narayan KMV. Costs of screening for pre-diabetes among U.S. adults. Diabetes Care. 2003;26:2536–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Hoerger TJ, Harris R, Hicks KA, Donahue K, Sorensen S, Engelgau M. Screening for type 2 diabetes mellitus: a cost-effectiveness analysis. Ann Intern Med. 2004;140:689–99.PubMedGoogle Scholar
  62. 62.
    Hilton DJ, O’Rourke PK, Welborn TA, Reid CM. Diabetes detection in Australian general practice: a comparison of diagnostic criteria. Med J Aust. 2002;176:104–7.PubMedGoogle Scholar
  63. 63.
    Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little R, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. A third national nutrition examination study, 1988–1994. Diabetes Care. 1998;21:518–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Centers for Disease Control and Prevention (CDC). Prevalence of diabetes and impaired fasting glucose in adults—United States, 1999–2000. MMWR. 2003;52:833–7.Google Scholar
  65. 65.
    CDC National Diabetes Fact Sheet; 2002. Accessed 28 February 2007.

Copyright information

© Society of General Internal Medicine 2008

Authors and Affiliations

  • David C. Ziemer
    • 1
  • Paul Kolm
    • 2
    • 8
  • Jovonne K. Foster
    • 2
  • William S. Weintraub
    • 2
    • 8
  • Viola Vaccarino
    • 2
  • Mary K. Rhee
    • 1
  • Rincy M. Varughese
    • 1
  • Circe W. Tsui
    • 1
  • David D. Koch
    • 3
  • Jennifer G. Twombly
    • 4
  • K. M. Venkat Narayan
    • 4
    • 5
  • Lawrence S. Phillips
    • 1
    • 6
    • 7
  1. 1.Division of Endocrinology and MetabolismEmory University School of MedicineAtlantaUSA
  2. 2.CardiologyEmory University School of MedicineAtlantaUSA
  3. 3.Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaUSA
  4. 4.Department of MedicineEmory University School of MedicineAtlantaUSA
  5. 5.Hubert Department of Global HealthRollins School of Public Health, Emory UniversityAtlantaUSA
  6. 6.VA Medical CenterAtlantaUSA
  7. 7.Division of EndocrinologyEmory UniversityAtlantaUSA
  8. 8.Christiana Care Health SystemNewarkUSA

Personalised recommendations