Advertisement

Comprehensive Characterization of a Porcine Model of The “Small-for-Flow” Syndrome

  • Maitane I. Orue-Echebarria
  • Javier Vaquero
  • Cristina J. Lisbona
  • Pablo Lozano
  • Miguel A. Steiner
  • Álvaro Morales
  • José Á. López-Baena
  • Juan Laso
  • Inmaculada Hernández
  • Luis Olmedilla
  • José L. García Sabrido
  • Isabel Peligros
  • Emma Sola
  • Carlos Carballal
  • Elena Vara
  • J. M. AsencioEmail author
Original Article
  • 15 Downloads

Abstract

Introduction

The term “Small-for-Flow” reflects the pathogenetic relevance of hepatic hemodynamics for the “Small-For-Size” syndrome and posthepatectomy liver failure. We aimed to characterize a large-animal model for studying the “Small-for-Flow” syndrome.

Methods

We performed subtotal (90%) hepatectomies in 10 female MiniPigs using a simplified transection technique with a tourniquet. Blood tests, hepatic and systemic hemodynamics, and hepatic function and histology were assessed before (Bas), 15 min (t-15 min) and 24 h (t-24 h) after the operation. Some pigs underwent computed tomography (CT) scans for hepatic volumetry (n = 4) and intracranial pressure (ICP) monitoring (n = 3). Postoperative care was performed in an intensive care unit environment.

Results

All hepatectomies were successfully performed, and hepatic volumetry confirmed liver remnant volumes of 9.2% [6.2–11.2]. The hepatectomy resulted in characteristic hepatic hemodynamic alterations, including portal hyperperfusion, relative decrease of hepatic arterial blood flow, and increased portal pressure (PP) and portal-systemic pressure gradient. The model reproduced major diagnostic features including the development of cholestasis, coagulopathy, encephalopathy with increased ICP, ascites, and renal failure, hyperdynamic circulation, and hyperlactatemia. Two animals (20%) died before t-24 h. Histological liver damage was observed at t-15 min and at t-24 h. The degree of histological damage at t-24 h correlated with intraoperative PP (r = 0.689, p = 0.028), hepatic arterial blood flow (r = 0.655, p = 0.040), and hepatic arterial pulsatility index (r = 0.724, p = 0.066). All animals with intraoperative PP > 20 mmHg presented liver damage at t-24 h.

Conclusion

The present 90% hepatectomy porcine experimental model is a feasible and reproducible model for investigating the “Small-for-Flow” syndrome.

Keywords

Small-for-Size Hepatectomy Pig Small-For-Flow Posthepatectomy liver failure 

Notes

Authors Contribution

Acquisition of data and drafting the work and final approval and agreement to be accountable for the work: Pablo Lozano, Miguel A. Steiner, Álvaro Morales, Juan Laso, Inma Hernández, Isabel Peligros, Emma Sola, Carlos Carballal, Elena Vara

Acquisition, analysis, and interpretation of data and drafting and revising and final approval and agreement to be accountable for the work: Maitane I. Orue-Echebarria, Javier Vaquero, Cristina J. Lisbona

Conception, design, acquisition, analysis, and interpretation and revising and final approval and agreement to be accountable for the work: José M. Asencio, Jose Á. López-Baena, José L. García Sabrido, Luis Olmedilla

Funding Information

This study is supported by a grant of the Sociedad Española de Trasplante Hepático (SETH) to J.M.A. J.V. was supported by a grant from ISCIII-Fondos FEDER “Una manera de hacer Europa” (PI15/1083) from Spain.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Allard M-A, Adam R, Bucur P-O, Termos S, Cunha AS, Bismuth H, et al. Posthepatectomy portal vein pressure predicts liver failure and mortality after major liver resection on noncirrhotic liver. Ann. Surg. 2013; 258: 822–829.CrossRefGoogle Scholar
  2. 2.
    Selzner M, Kashfi A, Cattral MS, Selzner N, Greig PD, Lilly L, et al. A graft to body weight ratio less than 0.8 does not exclude adult-to-adult right-lobe living donor liver transplantation. Liver Transpl. 2009; 15: 1776–1782.CrossRefGoogle Scholar
  3. 3.
    Kaido T, Mori A, Ogura Y, Hata K, Yoshizawa A, Iida T, et al. Lower limit of the graft-to-recipient weight ratio can be safely reduced to 0.6% in adult-to-adult living donor liver transplantation in combination with portal pressure control. Transplant. Proc. 2011; 43: 2391–2393.CrossRefGoogle Scholar
  4. 4.
    Sato Y, Yamamoto S, Oya H, Nakatsuka H, Tsukahara A, Kobayashi T, et al. Splenectomy for reduction of excessive portal hypertension after adult living-related donor liver transplantation. Hepatogastroenterology. 2002; 49: 1652–1655.Google Scholar
  5. 5.
    Shoreem H, Gad EH, Soliman H, Hegazy O, Saleh S, Zakaria H, et al. Small for size syndrome difficult dilemma: lessons from 10 years single centre experience in living donor liver transplantation. World J Hepatol. 2017; 9: 930–944.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Nguyen JH, Harnois DM. Incidence and outcome of small-for-size liver grafts transplanted in adult recipients. Transplant. Proc. 2018; 50: 198–201.CrossRefGoogle Scholar
  7. 7.
    Nagano Y, Nagahori K, Kamiyama M, Fujii Y, Kubota T, Endo I, et al. Improved functional reserve of hypertrophied contra lateral liver after portal vein ligation in rats. J. Hepatol. 2002; 37: 72–77.CrossRefGoogle Scholar
  8. 8.
    Sethi P, Thillai M, Thankamonyamma BS, Mallick S, Gopalakrishnan U, Balakrishnan D, et al. Living donor liver transplantation using small-for-size grafts: does size really matter? J Clin Exp Hepatol. 2018; 8: 125–131.CrossRefGoogle Scholar
  9. 9.
    Boillot O, Delafosse B, Méchet I, Boucaud C, Pouyet M. Small-for-size partial liver graft in an adult recipient; a new transplant technique. Lancet. 2002; 359: 406–407.CrossRefGoogle Scholar
  10. 10.
    Yagi S, Iida T, Hori T, Taniguchi K, Yamamoto C, Yamagiwa K, et al. Optimal portal venous circulation for liver graft function after living-donor liver transplantation. Transplantation. 2006; 81: 373–378.CrossRefGoogle Scholar
  11. 11.
    Troisi R, de Hemptinne B. Clinical relevance of adapting portal vein flow in living donor liver transplantation in adult patients. Liver Transpl. 2003; 9: S36–41.CrossRefGoogle Scholar
  12. 12.
    Troisi R, Ricciardi S, Smeets P, Petrovic M, Van Maele G, Colle I, et al. Effects of hemi-portocaval shunts for inflow modulation on the outcome of small-for-size grafts in living donor liver transplantation. Am. J. Transplant. 2005; 5: 1397–1404.CrossRefGoogle Scholar
  13. 13.
    Asencio JM, Vaquero J, Olmedilla L, García Sabrido JL. “Small-for-flow” syndrome: shifting the “size” paradigm. Med. Hypotheses. 2013; 80: 573–577.CrossRefGoogle Scholar
  14. 14.
    Court FG, Wemyss-Holden SA, Morrison CP, Teague BD, Laws PE, Kew J, et al. Segmental nature of the porcine liver and its potential as a model for experimental partial hepatectomy. Br J Surg. 2003; 90: 440–444.CrossRefGoogle Scholar
  15. 15.
    Golriz M, Fonouni H, Nickkholgh A, Hafezi M, Garoussi C, Mehrabi A. Pig kidney transplantation: an up-to-date guideline. Eur Surg Res. 2012; 49: 121–129.CrossRefGoogle Scholar
  16. 16.
    Fondevila C, Hessheimer AJ, Taurá P, Sánchez O, Calatayud D, de Riva N, et al. Portal hyperperfusion: mechanism of injury and stimulus for regeneration in porcine small-for-size transplantation. Liver Transpl. 2010; 16: 364–374.CrossRefGoogle Scholar
  17. 17.
    Asencio JM, García-Sabrido JL, López-Baena JA, Olmedilla L, Peligros I, Lozano P, et al. Preconditioning by portal vein embolization modulates hepatic hemodynamics and improves liver function in pigs with extended hepatectomy. Surgery. 2017; 161: 1489–1501.CrossRefGoogle Scholar
  18. 18.
    Asencio JM, García Sabrido JL, Olmedilla L. How to expand the safe limits in hepatic resections? J Hepatobiliary Pancreat Sci. 2014; 21: 399–404.CrossRefGoogle Scholar
  19. 19.
    Mohkam K, Darnis B, Mabrut J-Y. Porcine models for the study of small-for-size syndrome and portal inflow modulation: literature review and proposal for a standardized nomenclature. J Hepatobiliary Pancreat Sci. 2016; 23: 668–680.CrossRefGoogle Scholar
  20. 20.
    Xia Q, Lu T-F, Zhou Z-H, Hu L-X, Ying J, Ding D-Z, et al. Extended hepatectomy with segments I and VII as resection remnant: a simple model for small-for-size injuries in pigs. HBPD INT. 2008; 7: 601–607.Google Scholar
  21. 21.
    Kahn D, Hickman R, Terblanche J, von Sommoggy S. Partial hepatectomy and liver regeneration in pigs--the response to different resection sizes. J. Surg. Res. 1988; 45: 176–180.CrossRefGoogle Scholar
  22. 22.
    Kaiser GM, Frühauf NR. Method of intracranial pressure monitoring and cerebrospinal fluid sampling in swine. Lab. Anim. 2007; 41: 80–85.CrossRefGoogle Scholar
  23. 23.
    Frühauf NR, Radunz S, Grabellus F, Laube T, Uerschels AK, Kaiser GM. Neuromonitoring in a porcine model of acute hepatic failure. Lab. Anim. 2011; 45: 174–178.CrossRefGoogle Scholar
  24. 24.
    Dahm F, Georgiev P, Clavien P-A. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am. J. Transplant. 2005; 5: 2605–2610.CrossRefGoogle Scholar
  25. 25.
    Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R, et al. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery. 2011; 149: 713–724.CrossRefGoogle Scholar
  26. 26.
    Qadan M, Garden OJ, Corvera CU, Visser BC. Management of postoperative hepatic failure. J. Am. Coll. Surg. 2016; 222: 195–208.CrossRefGoogle Scholar
  27. 27.
    Demetris AJ, Kelly DM, Eghtesad B, Fontes P, Wallis Marsh J, Tom K, et al. Pathophysiologic observations and histopathologic recognition of the portal hyperperfusion or small-for-size syndrome. Am. J. Surg. Pathol. 2006; 30: 986–993.CrossRefGoogle Scholar
  28. 28.
    Kelly DM, Demetris AJ, Fung JJ, Marcos A, Zhu Y, Subbotin V, et al. Porcine partial liver transplantation: a novel model of the “small-for-size” liver graft. Liver Transpl. 2004; 10: 253–263.CrossRefGoogle Scholar
  29. 29.
    Sainz-Barriga M, Scudeller L, Costa MG, de Hemptinne B, Troisi RI. Lack of a correlation between portal vein flow and pressure: toward a shared interpretation of hemodynamic stress governing inflow modulation in liver transplantation. Liver Transpl. 2011; 17: 836–848.CrossRefGoogle Scholar

Copyright information

© The Society for Surgery of the Alimentary Tract 2019

Authors and Affiliations

  • Maitane I. Orue-Echebarria
    • 1
    • 2
  • Javier Vaquero
    • 3
  • Cristina J. Lisbona
    • 4
  • Pablo Lozano
    • 1
  • Miguel A. Steiner
    • 1
  • Álvaro Morales
    • 1
  • José Á. López-Baena
    • 1
  • Juan Laso
    • 4
  • Inmaculada Hernández
    • 4
  • Luis Olmedilla
    • 4
  • José L. García Sabrido
    • 1
  • Isabel Peligros
    • 5
  • Emma Sola
    • 5
  • Carlos Carballal
    • 6
  • Elena Vara
    • 7
  • J. M. Asencio
    • 1
    • 2
    • 8
    Email author
  1. 1.Transplant and Hepatobiliopancreatic Surgery Unit, Department of General and Digestive SurgeryHospital General Universitario Gregorio Marañón - IiSGMMadridSpain
  2. 2.Department of Surgery, School of MedicineUniversidad Complutense de MadridMadridSpain
  3. 3.Research Laboratory in Hepatology and GastroenterologyHospital General Universitario Gregorio Marañón - IiSGM – CIBERehdMadridSpain
  4. 4.Department of Anaesthesiology and ResuscitationHospital General Universitario Gregorio Marañón - IiSGMMadridSpain
  5. 5.Department of PathologyHospital General Universitario Gregorio Marañón - IiSGMMadridSpain
  6. 6.Department of NeurosurgeryHospital General Universitario Gregorio Marañón - IiSGMMadridSpain
  7. 7.Department of Biochemistry and Molecular Biology, School of MedicineUniversidad Complutense de MadridMadridSpain
  8. 8.Department of General SurgeryHospital General Universitario Gregorio Marañón - IiSGMMadridSpain

Personalised recommendations