Journal of Gastrointestinal Surgery

, Volume 19, Issue 5, pp 858–865 | Cite as

Minimally Invasive Resection of Choledochal Cyst: a Feasible and Safe Surgical Option

  • Georgios Antonios Margonis
  • Gaya Spolverato
  • Yuhree Kim
  • Hugo Marques
  • George Poultsides
  • Shishir Maithel
  • Luca Aldrighetti
  • Todd W. Bauer
  • Nicolas Jabbour
  • T. Clark Gamblin
  • Kevin Soares
  • Timothy M. Pawlik
Original Article



The use of minimally invasive surgery (MIS) for choledochal cyst (CC) has not been well documented. We sought to define the overall utilization and outcomes associated with the use of the open versus MIS approach for CC. We examined the factors associated with receipt of MIS for CC, as well as characterized perioperative and long-term outcomes following open versus MIS for CC.


Between 1972 and 2014, a total of 368 patients who underwent resection for CC were identified from an international, multicenter database. A 2:1 propensity score matching was used to create comparable cohorts of patients to assess the effect of MIS on short-term outcomes.


Three hundred thirty-two patients had an open procedure, whereas 36 patients underwent an MIS approach. Children were more likely to be treated with a MIS approach (children, 24.0 % vs. adults, 2.1 %; P < 0.001). Conversely, patients who had any medical comorbidity were less likely to undergo MIS surgery (open, 26.2 % vs. MIS, 2.8 %; P = 0.002). In the propensity-matched cohort, MIS resection was associated with decreased length of stay (open, 7 days vs. MIS, 5 days), lower estimated blood loss (open, 50 mL vs. MIS, 17.5 mL), and longer operative time (open, 237 min vs. MIS, 301 min) compared with open surgery (all P < 0.05). The overall and degree of complication did not differ between the open (grades I–II, n = 13; grades III–IV, n = 15) versus MIS (grades I–II, n = 5; grades III–IV, n = 5) cohorts (P = 0.85). Five-year overall survival was 98.6 % (open, 98.0 % vs. MIS, 100.0 %; P = 0.45); no patient who underwent MIS developed a subsequent cholangiocarcinoma.


MIS resection of CC was demonstrated to be a feasible and safe approach with acceptable short-term outcomes in the pediatric population. MIS for benign CC disease was associated with similar perioperative morbidity but a shorter length of stay and a lower blood loss when compared with open resection.


Choledochal cyst Surgery Laparoscopy Mini-invasive surgery 


  1. 1.
    O’Neill, J.A., Jr., Choledochal cyst. Curr Probl Surg, 1992. 29(6): p. 361–410.PubMedGoogle Scholar
  2. 2.
    Hung, M.H., et al., Choledochal cysts in infants and children: experiences over a 20-year period at a single institution. Eur J Pediatr, 2011. 170(9): p. 1179–85.CrossRefPubMedGoogle Scholar
  3. 3.
    Rozel, C., et al., Imaging of biliary disorders in children. Pediatr Radiol, 2011. 41(2): p. 208–20.CrossRefPubMedGoogle Scholar
  4. 4.
    Wiseman, K., et al., Epidemiology, presentation, diagnosis, and outcomes of choledochal cysts in adults in an urban environment. Am J Surg, 2005. 189(5): p. 527–31; discussion 531.CrossRefPubMedGoogle Scholar
  5. 5.
    Kim, O.H., H.J. Chung, and B.G. Choi, Imaging of the choledochal cyst. Radiographics, 1995. 15(1): p. 69–88.CrossRefPubMedGoogle Scholar
  6. 6.
    Atkinson, H.D., et al., Choledochal cysts in adults and their complications. HPB (Oxford), 2003. 5(2): p. 105–10.CrossRefGoogle Scholar
  7. 7.
    Duan, X., et al., Totally Laparoscopic Cyst Excision and Roux-en-Y Hepaticojejunostomy for Choledochal Cyst in Adults: A Single-institute Experience of 5 Years. Surg Laparosc Endosc Percutan Tech, 2014.Google Scholar
  8. 8.
    Babbitt, D.P., [Congenital choledochal cysts: new etiological concept based on anomalous relationships of the common bile duct and pancreatic bulb]. Ann Radiol (Paris), 1969. 12(3): p. 231–40.Google Scholar
  9. 9.
    Cheng, S.P., et al., Choledochal cyst in adults: aetiological considerations to intrahepatic involvement. ANZ J Surg, 2004. 74(11): p. 964–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Hill, R., et al., Intrahepatic duct dilatation in type 4 choledochal malformation: pressure-related, postoperative resolution. J Pediatr Surg, 2011. 46(2): p. 299–303.CrossRefPubMedGoogle Scholar
  11. 11.
    Todani, T., et al., Congenital bile duct cysts: Classification, operative procedures, and review of thirty-seven cases including cancer arising from choledochal cyst. Am J Surg, 1977. 134(2): p. 263–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Edil, B.H., et al., Choledochal cyst disease in children and adults: a 30-year single-institution experience. J Am Coll Surg, 2008. 206(5): p. 1000–5; discussion 1005–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Visser, B.C., et al., Congenital choledochal cysts in adults. Arch Surg, 2004. 139(8): p. 855–60; discussion 860–2.CrossRefPubMedGoogle Scholar
  14. 14.
    Tomono, H., et al., Point mutations of the c-Ki-ras gene in carcinoma and atypical epithelium associated with congenital biliary dilation. Am J Gastroenterol, 1996. 91(6): p. 1211–4.PubMedGoogle Scholar
  15. 15.
    Stringer, M.D., Wide hilar hepaticojejunostomy: the optimum method of reconstruction after choledochal cyst excision. Pediatr Surg Int, 2007. 23(6): p. 529–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Lipsett, P.A., et al., Choledochal cyst disease. A changing pattern of presentation. Ann Surg, 1994. 220(5): p. 644–52.Google Scholar
  17. 17.
    She, W.H., et al., Management of choledochal cyst: 30 years of experience and results in a single center. J Pediatr Surg, 2009. 44(12): p. 2307–11.CrossRefPubMedGoogle Scholar
  18. 18.
    Rattner, D.W., R.H. Schapiro, and A.L. Warshaw, Abnormalities of the pancreatic and biliary ducts in adult patients with choledochal cysts. Arch Surg, 1983. 118(9): p. 1068–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Mohiuddin, K. and S.J. Swanson, Maximizing the benefit of minimally invasive surgery. J Surg Oncol, 2013. 108(5): p. 315–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Attwood, S.E., et al., A prospective comparison of laparoscopic versus open cholecystectomy. Ann R Coll Surg Engl, 1992. 74(6): p. 397–400.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Glinatsis, M.T., J.P. Griffith, and M.J. McMahon, Open versus laparoscopic cholecystectomy: a retrospective comparative study. J Laparoendosc Surg, 1992. 2(2): p. 81–6; discussion 87.CrossRefPubMedGoogle Scholar
  22. 22.
    Nakajima, J., et al., Costs of videothoracoscopic surgery versus open resection for patients with of lung carcinoma. Cancer, 2000. 89(11 Suppl): p. 2497–501.CrossRefPubMedGoogle Scholar
  23. 23.
    Ohbuchi, T., et al., Lobectomy: video-assisted thoracic surgery versus posterolateral thoracotomy. Jpn J Thorac Cardiovasc Surg, 1998. 46(6): p. 519–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Lacy, A.M., et al., Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet, 2002. 359(9325): p. 2224–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Kaseda, S., et al., Better pulmonary function and prognosis with video-assisted thoracic surgery than with thoracotomy. Ann Thorac Surg, 2000. 70(5): p. 1644–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Lee, J.H., H.S. Han, and J.H. Lee, A prospective randomized study comparing open vs laparoscopy-assisted distal gastrectomy in early gastric cancer: early results. Surg Endosc, 2005. 19(2): p. 168–73.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhao, Y., et al., Comparison of outcomes for laparoscopically assisted and open radical distal gastrectomy with lymphadenectomy for advanced gastric cancer. Surg Endosc, 2011. 25(9): p. 2960–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim, H.H., et al., Morbidity and mortality of laparoscopic gastrectomy versus open gastrectomy for gastric cancer: an interim report--a phase III multicenter, prospective, randomized Trial (KLASS Trial). Ann Surg, 2010. 251(3): p. 417–20.Google Scholar
  29. 29.
    Ejaz, A., et al., A comparison of open and minimally invasive surgery for hepatic and pancreatic resections using the nationwide inpatient sample. Surgery, 2014Google Scholar
  30. 30.
    Jin, T., et al., A systematic review and meta-analysis of studies comparing laparoscopic and open distal pancreatectomy. HPB (Oxford), 2012. 14(11): p. 711–24.CrossRefGoogle Scholar
  31. 31.
    Cardinal, J.S., et al., Laparoscopic major hepatectomy: pure laparoscopic approach versus hand-assisted technique. J Hepatobiliary Pancreat Sci, 2013. 20(2): p. 114–9.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Lin, N.C., H. Nitta, and G. Wakabayashi, Laparoscopic major hepatectomy: a systematic literature review and comparison of 3 techniques. Ann Surg, 2013. 257(2): p. 205–13.CrossRefPubMedGoogle Scholar
  33. 33.
    He, J., et al., Laparoscopic pancreatic surgery. Minerva Chir, 2014Google Scholar
  34. 34.
    Farello, G.A., et al., Congenital choledochal cyst: video-guided laparoscopic treatment. Surg Laparosc Endosc, 1995. 5(5): p. 354–8.PubMedGoogle Scholar
  35. 35.
    Liuming, H., et al., The effect of laparoscopic excision vs open excision in children with choledochal cyst: a midterm follow-up study. J Pediatr Surg, 2011. 46(4): p. 662–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Yamataka, A., G.J. Lane, and J. Cazares, Laparoscopic surgery for biliary atresia and choledochal cyst. Semin Pediatr Surg, 2012. 21(3): p. 201–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Aspelund, G., et al., A role for laparoscopic approach in the treatment of biliary atresia and choledochal cysts. J Pediatr Surg, 2007. 42(5): p. 869–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Liem, N.T., et al., Early and intermediate outcomes of laparoscopic surgery for choledochal cysts with 400 patients. J Laparoendosc Adv Surg Tech A, 2012. 22(6): p. 599–603.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang, B., et al., Early experience with laparoscopic excision of choledochal cyst in 41 children. J Pediatr Surg, 2012. 47(12): p. 2175–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Dindo, D., N. Demartines, and P.A. Clavien, Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg, 2004. 240(2): p. 205–13.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Batchelder, A.J., et al., The evolution of minimally invasive bariatric surgery. J Surg Res, 2013. 183(2): p. 559–66.CrossRefPubMedGoogle Scholar
  42. 42.
    Schijven, M.P., S.S. Gisbertz, and M.I. van Berge Henegouwen, Laparoscopic surgery for gastro-esophageal acid reflux disease. Best Pract Res Clin Gastroenterol, 2014. 28(1): p. 97–109.Google Scholar
  43. 43.
    Maly, R.C., et al., Racial/ethnic group differences in treatment decision-making and treatment received among older breast carcinoma patients. Cancer, 2006. 106(4): p. 957–65.CrossRefPubMedGoogle Scholar
  44. 44.
    Diao, M., L. Li, and W. Cheng, Laparoscopic versus Open Roux-en-Y hepatojejunostomy for children with choledochal cysts: intermediate-term follow-up results. Surg Endosc, 2011. 25(5): p. 1567–73.CrossRefPubMedGoogle Scholar
  45. 45.
    Tang, S.T., et al., Laparoscopic choledochal cyst excision, hepaticojejunostomy, and extracorporeal Roux-en-Y anastomosis: a technical skill and intermediate-term report in 62 cases. Surg Endosc, 2011. 25(2): p. 416–22.CrossRefPubMedGoogle Scholar
  46. 46.
    Gander, J.W., et al., Laparoscopic excision of choledochal cysts with total intracorporeal reconstruction. J Laparoendosc Adv Surg Tech A, 2010. 20(10): p. 877–81.CrossRefPubMedGoogle Scholar
  47. 47.
    Chang, E.Y., et al., Lessons and tips from the experience of pediatric robotic choledochal cyst resection. J Laparoendosc Adv Surg Tech A, 2012. 22(6): p. 609–14.CrossRefPubMedGoogle Scholar
  48. 48.
    Kang, C.M., et al., A case of robot-assisted excision of choledochal cyst, hepaticojejunostomy, and extracorporeal Roux-en-y anastomosis using the da Vinci surgical system. Surg Laparosc Endosc Percutan Tech, 2007. 17(6): p. 538–41.CrossRefPubMedGoogle Scholar
  49. 49.
    Dawrant, M.J., A.S. Najmaldin, and N.K. Alizai, Robot-assisted resection of choledochal cysts and hepaticojejunostomy in children less than 10 kg. J Pediatr Surg, 2010. 45(12): p. 2364–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Spolverato, G., et al., A Multi-institutional Analysis of Open Versus Minimally-Invasive Surgery for Gastric Adenocarcinoma: Results of the US Gastric Cancer Collaborative. J Gastrointest Surg, 2014Google Scholar
  51. 51.
    Qiao, G., et al., Laparoscopic cyst excision and Roux-Y hepaticojejunostomy for children with choledochal cysts in China: a multicenter study. Surg Endosc, 2014.Google Scholar
  52. 52.
    Liu, Y., et al., Comparison of therapeutic effects of laparoscopic and open operation for congenital choledochal cysts in adults. Gastroenterol Res Pract, 2014. 2014: p. 670260.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Spampinato, M.G., et al., Assessing the Learning Curve for Totally Laparoscopic Major-Complex Liver Resections: A Single Hepatobiliary Surgeon Experience. Surg Laparosc Endosc Percutan Tech, 2014Google Scholar
  54. 54.
    Kluger, M.D., et al., The learning curve in laparoscopic major liver resection. J Hepatobiliary Pancreat Sci, 2013. 20(2): p. 131–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Rao, A.M. and I. Ahmed, Laparoscopic versus open liver resection for benign and malignant hepatic lesions in adults. Cochrane Database Syst Rev, 2013. 5: p. CD010162.Google Scholar
  56. 56.
    Lawrie, T.A., et al., Laparoscopy versus laparotomy for FIGO stage I ovarian cancer. Cochrane Database Syst Rev, 2013. 2: p. CD005344.Google Scholar

Copyright information

© The Society for Surgery of the Alimentary Tract 2014

Authors and Affiliations

  • Georgios Antonios Margonis
    • 1
  • Gaya Spolverato
    • 1
  • Yuhree Kim
    • 1
  • Hugo Marques
    • 2
  • George Poultsides
    • 3
  • Shishir Maithel
    • 4
  • Luca Aldrighetti
    • 5
  • Todd W. Bauer
    • 6
  • Nicolas Jabbour
    • 7
  • T. Clark Gamblin
    • 8
  • Kevin Soares
    • 1
  • Timothy M. Pawlik
    • 1
  1. 1.Department of SurgeryThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Curry Cabral HospitalLisbonPortugal
  3. 3.Stanford UniversityStanfordUSA
  4. 4.Emory UniversityAtlantaUSA
  5. 5.Ospedale San RaffaeleMilanItaly
  6. 6.University of VirginiaCharlottesvilleUSA
  7. 7.Universite Catholique de LouvainBrusselsBelgium
  8. 8.Medical College of WisconsinMilwaukeeUSA

Personalised recommendations