Advertisement

Journal of Gastrointestinal Surgery

, Volume 19, Issue 2, pp 387–399 | Cite as

Enhanced Recovery After Surgery Protocols for Open Hepatectomy—Physiology, Immunomodulation, and Implementation

  • Andrew J. Page
  • Aslam Ejaz
  • Gaya Spolverato
  • Tiffany Zavadsky
  • Michael C. Grant
  • Daniel J. Galante
  • Elizabeth C. Wick
  • Matthew Weiss
  • Martin A. Makary
  • Christopher L. Wu
  • Timothy M. PawlikEmail author
Review Article

Abstract

There has been recent interest in enhanced-recovery after surgery (ERAS®) or “fast-track” perioperative protocols in the surgical community. The subspecialty field of colorectal surgery has been the leading adopter of ERAS protocols, with less data available regarding its adoption in hepato-pancreato-biliary surgery. This review focuses on available data pertaining to the application of ERAS to open hepatectomy. We focus on four fundamental variables that impact normal physiology and exacerbate perioperative inflammation: (1) the stress of laparotomy, (2) the use of opioids, (3) blood loss and blood product transfusions, and (4) perioperative fasting. The attenuation of these inflammatory stressors is largely responsible for the improvements in perioperative outcomes due to the implementation of ERAS-based pathways. Collectively, the data suggest that the implementation of ERAS principles should be strongly considered in all patients undergoing hepatectomy.

Keywords

Enhanced recovery Hepatectomy Epidural anesthesia Low-CVP surgery 

Notes

Conflict of Interests

The authors declare no conflicts of interest with respect to the authorship and/or publication of this article.

Funding

The authors received no financial support for the research and/or authorship of this article.

References

  1. 1.
    Gustafsson U, Scott M, Schwenk W, et al. Guidelines for perioperative care in elective colonic surgery: enhanced recovery after surgery (ERAS®) society recommendations. World journal of surgery 2013; 37(2): 259–84.PubMedCrossRefGoogle Scholar
  2. 2.
    Hayhurst C, Durieux ME. Enteral Hydration Prior to Surgery: The Benefits Are Clear. Anesthesia & Analgesia 2014; 118(6): 1163–4.CrossRefGoogle Scholar
  3. 3.
    Aarts M-A, Okrainec A, Glicksman A, Pearsall E, Victor JC, McLeod RS. Adoption of enhanced recovery after surgery (ERAS) strategies for colorectal surgery at academic teaching hospitals and impact on total length of hospital stay. Surgical endoscopy 2012; 26(2): 442–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Varadhan KK, Neal KR, Dejong CH, Fearon KC, Ljungqvist O, Lobo DN. The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a meta-analysis of randomized controlled trials. Clinical nutrition 2010; 29(4): 434–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Muller S, Zalunardo MP, Hubner M, Clavien PA, Demartines N. A fast-track program reduces complications and length of hospital stay after open colonic surgery. Gastroenterology 2009; 136(3): 842–7. e1.Google Scholar
  6. 6.
    Šerclová Z, Dytrych P, Marvan J, et al. Fast-track in open intestinal surgery: prospective randomized study (Clinical Trials Gov Identifier no. NCT00123456). Clinical Nutrition 2009; 28(6): 618–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Spanjersberg WR, Reurings J, Keus F, Van Laarhoven C. Fast track surgery versus conventional recovery strategies for colorectal surgery. Cochrane Database Syst Rev 2011; 2.Google Scholar
  8. 8.
    Lv L, Shao Y-f, Zhou Y-b. The enhanced recovery after surgery (ERAS) pathway for patients undergoing colorectal surgery: an update of meta-analysis of randomized controlled trials. International journal of colorectal disease 2012; 27(12): 1549–54.Google Scholar
  9. 9.
    Anderson A, McNaught C, MacFie J, Tring I, Barker P, Mitchell C. Randomized clinical trial of multimodal optimization and standard perioperative surgical care. British journal of surgery 2003; 90(12): 1497–504.PubMedCrossRefGoogle Scholar
  10. 10.
    Gatt M, Anderson A, Reddy B, Hayward‐Sampson P, Tring I, MacFie J. Randomized clinical trial of multimodal optimization of surgical care in patients undergoing major colonic resection. British journal of surgery 2005; 92(11): 1354–62.Google Scholar
  11. 11.
    Eskicioglu C, Forbes SS, Aarts M-A, Okrainec A, McLeod RS. Enhanced recovery after surgery (ERAS) programs for patients having colorectal surgery: a meta-analysis of randomized trials. Journal of gastrointestinal surgery 2009; 13(12): 2321–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhuang C-L, Ye X-Z, Zhang X-D, Chen B-C, Yu Z. Enhanced recovery after surgery programs versus traditional care for colorectal surgery: a meta-analysis of randomized controlled trials. Diseases of the Colon & Rectum 2013; 56(5): 667–78.CrossRefGoogle Scholar
  13. 13.
    Page A, Rostad B, Staley CA, et al. Epidural analgesia in hepatic resection. Journal of the American College of Surgeons 2008; 206(6): 1184–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Kooby DA, Stockman J, Ben-Porat L, et al. Influence of transfusions on perioperative and long-term outcome in patients following hepatic resection for colorectal metastases. Annals of surgery 2003; 237(6): 860.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Melendez JA, Arslan V, Fischer ME, et al. Perioperative outcomes of major hepatic resections under low central venous pressure anesthesia: blood loss, blood transfusion, and the risk of postoperative renal dysfunction. Journal of the American College of Surgeons 1998; 187(6): 620–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen H, Merchant NB, Didolkar MS. Hepatic resection using intermittent vascular inflow occlusion and low central venous pressure anesthesia improves morbidity and mortality. Journal of gastrointestinal surgery 2000; 4(2): 162–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Wong-Lun-Hing E, Lodewick T, Stoot J, et al. A survey in the HPB community on ways to enhance patient recovery. Improving the outcome of liver surgery 2012: 189.Google Scholar
  18. 18.
    Schultz N, Larsen P, Klarskov B, et al. Evaluation of a fast‐track programme for patients undergoing liver resection. British journal of surgery 2013; 100(1): 138–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Van Dam R, Hendry P, Coolsen M, et al. Initial experience with a multimodal enhanced recovery programme in patients undergoing liver resection. British Journal of Surgery 2008; 95(8): 969–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Jones C, Kelliher L, Dickinson M, et al. Randomized clinical trial on enhanced recovery versus standard care following open liver resection. British Journal of Surgery 2013; 100(8): 1015–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Lin D-X, Li X, Ye Q-W, Lin F, Li L-L, Zhang Q-Y. Implementation of a fast-track clinical pathway decreases postoperative length of stay and hospital charges for liver resection. Cell biochemistry and biophysics 2011; 61(2): 413–9.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Dunne DF, Yip VS, Jones RP, et al. Enhanced recovery in the resection of colorectal liver metastases. Journal of surgical oncology 2014.Google Scholar
  23. 23.
    Goldfarb Y, Sorski L, Benish M, Levi B, Melamed R, Ben-Eliyahu S. Improving postoperative immune status and resistance to cancer metastasis: a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses. Annals of surgery 2011; 253(4): 798–810.PubMedCrossRefGoogle Scholar
  24. 24.
    Colacchio TA, Yeager MP, Hildebrandt LW. Perioperative immunomodulation in cancer surgery. The American journal of surgery 1994; 167(1): 174–9.CrossRefGoogle Scholar
  25. 25.
    Benish M, Bartal I, Goldfarb Y, et al. Perioperative use of β-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Annals of surgical oncology 2008; 15(7): 2042–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Wada H, Seki S, Takahashi T, et al. Combined spinal and general anesthesia attenuates liver metastasis by preserving TH1/TH2 cytokine balance. Anesthesiology 2007; 106(3): 499–506.PubMedCrossRefGoogle Scholar
  27. 27.
    Greenfeld K, Avraham R, Benish M, et al. Immune suppression while awaiting surgery and following it: dissociations between plasma cytokine levels, their induced production, and NK cell cytotoxicity. Brain, behavior, and immunity 2007; 21(4): 503–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Bartal I, Melamed R, Greenfeld K, et al. Immune perturbations in patients along the perioperative period: alterations in cell surface markers and leukocyte subtypes before and after surgery. Brain, behavior, and immunity 2010; 24(3): 376–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Bar-Yosef S, Melamed R, Page GG, Shakhar G, Shakhar K, Ben-Eliyahu S. Attenuation of the tumor-promoting effect of surgery by spinal blockade in rats. Anesthesiology 2001; 94(6): 1066–73.PubMedCrossRefGoogle Scholar
  30. 30.
    Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature medicine 1995; 1(2): 149–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Belizon A, Balik E, Feingold DL, et al. Major abdominal surgery increases plasma levels of vascular endothelial growth factor: open more so than minimally invasive methods. Annals of surgery 2006; 244(5): 792.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lee J-W, Shahzad MM, Lin YG, et al. Surgical stress promotes tumor growth in ovarian carcinoma. Clinical Cancer Research 2009; 15(8): 2695–702.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Wang H-L, Ning T, Li M, et al. Effect of endostatin on preventing postoperative progression of distant metastasis in a murine lung cancer model. Tumori 2011; 97(6): 787.PubMedGoogle Scholar
  34. 34.
    Folkman J. Role of angiogenesis in tumor growth and metastasis. Seminars in oncology; 2002: Elsevier; 2002. p. 15–8.Google Scholar
  35. 35.
    Ash SA, Buggy DJ. Does regional anaesthesia and analgesia or opioid analgesia influence recurrence after primary cancer surgery? An update of available evidence. Best Practice & Research Clinical Anaesthesiology 2013; 27(4): 441–56.CrossRefGoogle Scholar
  36. 36.
    Page AJ, Kooby DA. Perioperative management of hepatic resection. Journal of gastrointestinal oncology 2012; 3(1): 19–27.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Gurusamy KS, Li J, Sharma D, Davidson BR. Cardiopulmonary interventions to decrease blood loss and blood transfusion requirements for liver resection. Cochrane Database Syst Rev 2009; 4.Google Scholar
  38. 38.
    Tzimas P, Prout J, Papadopoulos G, Mallett S. Epidural anaesthesia and analgesia for liver resection. Anaesthesia 2013; 68(6): 628–35.PubMedCrossRefGoogle Scholar
  39. 39.
    Urwin S, Parker M, Griffiths R. General versus regional anaesthesia for hip fracture surgery: a meta-analysis of randomized trials. British journal of anaesthesia 2000; 84(4): 450–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Ballantyne JC, Carr DB, Suarez T, et al. The comparative effects of postoperative analgesic therapies on pulmonary outcome: cumulative meta-analyses of randomized, controlled trials. Anesthesia & analgesia 1998; 86(3): 598–612.Google Scholar
  41. 41.
    Rodgers A, Walker N, Schug S, et al. Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised trials. Bmj 2000; 321(7275): 1493.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Pöpping DM, Elia N, Van Aken HK, et al. Impact of epidural analgesia on mortality and morbidity after surgery: systematic review and meta-analysis of randomized controlled trials. Annals of surgery 2014; 259(6): 1056–67.PubMedCrossRefGoogle Scholar
  43. 43.
    Conrick-Martin I, Kell MR, Buggy DJ. Meta-analysis of the effect of central neuraxial regional anesthesia compared with general anesthesia on postoperative natural killer T lymphocyte function. Journal of clinical anesthesia 2012; 24(1): 3–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Sobel H, Bonorris G. Effect of morphine on rats bearing Walker carcinosarcoma 256. 1962.Google Scholar
  45. 45.
    Gupta K, Kshirsagar S, Chang L, et al. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Research 2002; 62(15): 4491–8.PubMedGoogle Scholar
  46. 46.
    Lennon FE, Moss J, Singleton PA. The μ-opioid receptor in cancer progression: is there a direct effect? Anesthesiology 2012; 116(4): 940–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Koodie L, Ramakrishnan S, Roy S. Morphine suppresses tumor angiogenesis through a HIF-1α/p38MAPK pathway. The American journal of pathology 2010; 177(2): 984–97.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Gach K, Szemraj J, Fichna J, Piestrzeniewicz M, Delbro DS, Janecka A. The Influence of Opioids on Urokinase Plasminogen Activator on Protein and mRNA Level in MCF‐7 Breast Cancer Cell Line. Chemical biology & drug design 2009; 74(4): 390–6.CrossRefGoogle Scholar
  49. 49.
    Gach K, Wyrębska A, Fichna J, Janecka A. The role of morphine in regulation of cancer cell growth. Naunyn-Schmiedeberg’s archives of pharmacology 2011; 384(3): 221–30.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Forget P, Collet V, Lavand’homme P, De Kock M. Does analgesia and condition influence immunity after surgery? Effects of fentanyl, ketamine and clonidine on natural killer activity at different ages. European Journal of Anaesthesiology (EJA) 2010; 27(3): 233–40.CrossRefGoogle Scholar
  51. 51.
    Yeager MP, Colacchio TA. Effect of morphine on growth of metastatic colon cancer in vivo. Archives of Surgery 1991; 126(4): 454–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Sasamura T, Nakamura S, Iida Y, et al. Morphine analgesia suppresses tumor growth and metastasis in a mouse model of cancer pain produced by orthotopic tumor inoculation. European journal of pharmacology 2002; 441(3): 185–91.PubMedCrossRefGoogle Scholar
  53. 53.
    Vlassakov KV, Zinner MJ. Putting the Patient First. Annals of surgery 2014; 259(6): 1070–2.PubMedCrossRefGoogle Scholar
  54. 54.
    Holt D, Ma X, Kundu N, Fulton A. Prostaglandin E2 (PGE2) suppresses natural killer cell function primarily through the PGE2 receptor EP4. Cancer Immunology, Immunotherapy 2011; 60(11): 1577–86.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Heaney A, Buggy D. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? British journal of anaesthesia 2012; 109(suppl 1): i17-i28.PubMedCrossRefGoogle Scholar
  56. 56.
    Forget P, Bentin C, Machiels J-P, Berlière M, Coulie P, De Kock M. Intraoperative use of ketorolac or diclofenac is associated with improved disease-free survival and overall survival in conservative breast cancer surgery. British journal of anaesthesia 2014: aet464.Google Scholar
  57. 57.
    Katz SC, Shia J, Liau KH, et al. Operative blood loss independently predicts recurrence and survival after resection of hepatocellular carcinoma. Annals of surgery 2009; 249(4): 617–23.PubMedCrossRefGoogle Scholar
  58. 58.
    Shiba H, Ishida Y, Wakiyama S, et al. Negative impact of blood transfusion on recurrence and prognosis of hepatocellular carcinoma after hepatic resection. Journal of Gastrointestinal Surgery 2009; 13(9): 1636–42.PubMedCrossRefGoogle Scholar
  59. 59.
    Opelz G, Terasaki PI. Improvement of kidney-graft survival with increased numbers of blood transfusions. New England Journal of Medicine 1978; 299(15): 799–803.PubMedCrossRefGoogle Scholar
  60. 60.
    Cata J, Wang H, Gottumukkala V, Reuben J, Sessler D. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. British journal of anaesthesia 2013; 110(5): 690–701.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    van Twuyver E, Mooijaart RJ, ten Berge IJ, et al. Pretransplantation blood transfusion revisited. New England Journal of Medicine 1991; 325(17): 1210–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Jensen L, Andersen A, Christiansen P, et al. Postoperative infection and natural killer cell function following blood transfusion in patients undergoing elective colorectal surgery. British Journal of Surgery 1992; 79(6): 513–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Tartter PI. The association of perioperative blood transfusion with colorectal cancer recurrence. Annals of surgery 1992; 216(6): 633.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Heiss MM, Mempel W, Delanoff C, et al. Blood transfusion-modulated tumor recurrence: first results of a randomized study of autologous versus allogeneic blood transfusion in colorectal cancer surgery. Journal of clinical oncology 1994; 12(9): 1859–67.PubMedGoogle Scholar
  65. 65.
    Busch O, Hop W, van Papendrecht MH, Marquet RL, Jeekel J. Blood transfusions and prognosis in colorectal cancer. New England Journal of Medicine 1993; 328(19): 1372–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Acheson AG, Brookes MJ, Spahn DR. Effects of allogeneic red blood cell transfusions on clinical outcomes in patients undergoing colorectal cancer surgery: a systematic review and meta-analysis. Annals of surgery 2012; 256(2): 235–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Luan H, Ye F, Wu L, Zhou Y, Jiang J. Perioperative blood transfusion adversely affects prognosis after resection of lung cancer: a systematic review and a meta-analysis. BMC surgery 2014; 14(1): 34.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Wang C-C, Iyer SG, Low JK, et al. Perioperative factors affecting long-term outcomes of 473 consecutive patients undergoing hepatectomy for hepatocellular carcinoma. Annals of surgical oncology 2009; 16(7): 1832–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Amato A, Pescatori M. Perioperative blood transfusions for the recurrence of colorectal cancer. Cochrane Database Syst Rev 2006; 1.Google Scholar
  70. 70.
    Kneuertz PJ, Patel SH, Chu CK, et al. Effects of perioperative red blood cell transfusion on disease recurrence and survival after pancreaticoduodenectomy for ductal adenocarcinoma. Annals of surgical oncology 2011; 18(5): 1327–34.PubMedCrossRefGoogle Scholar
  71. 71.
    Awad S, Varadhan KK, Ljungqvist O, Lobo DN. A meta-analysis of randomised controlled trials on preoperative oral carbohydrate treatment in elective surgery. Clinical Nutrition 2013; 32(1): 34–44.PubMedCrossRefGoogle Scholar
  72. 72.
    Maltby JR, Sutherland A, Sale J, Shaffer E. Preoperative oral fluids: is a five-hour fast justified prior to elective surgery? Anesthesia & Analgesia 1986; 65(11): 1112–6.CrossRefGoogle Scholar
  73. 73.
    Gjessing PF. Postoperative insulin resistance and the metabolic and cellular responses to single-dose preoperative oral carbohydrate supplementation–Experimental studies in pigs. 2014.Google Scholar
  74. 74.
    Ljungqvist O, Nygren J, Thorell A. Modulation of post-operative insulin resistance by pre-operative carbohydrate loading. Proceedings of the Nutrition Society 2002; 61(03): 329–36.PubMedCrossRefGoogle Scholar
  75. 75.
    Soop M, Nygren J, Myrenfors P, Thorell A, Ljungqvist O. Preoperative oral carbohydrate treatment attenuates immediate postoperative insulin resistance. American Journal of Physiology-Endocrinology And Metabolism 2001; 280(4): E576-E83.PubMedGoogle Scholar
  76. 76.
    Hausel J, Nygren J, Lagerkranser M, et al. A carbohydrate-rich drink reduces preoperative discomfort in elective surgery patients. Anesthesia & Analgesia 2001; 93(5): 1344–50.CrossRefGoogle Scholar
  77. 77.
    Eshuis WJ, Hermanides J, van Dalen JW, et al. Early postoperative hyperglycemia is associated with postoperative complications after pancreatoduodenectomy. Annals of surgery 2011; 253(4): 739–44.PubMedCrossRefGoogle Scholar
  78. 78.
    Desai SP, Henry LL, Holmes SD, et al. Strict versus liberal target range for perioperative glucose in patients undergoing coronary artery bypass grafting: a prospective randomized controlled trial. The Journal of thoracic and cardiovascular surgery 2012; 143(2): 318–25.PubMedCrossRefGoogle Scholar
  79. 79.
    King JT, Goulet JL, Perkal MF, Rosenthal RA. Glycemic control and infections in patients with diabetes undergoing noncardiac surgery. Annals of surgery 2011; 253(1): 158–65.PubMedCrossRefGoogle Scholar
  80. 80.
    Kiran RP, Turina M, Hammel J, Fazio V. The clinical significance of an elevated postoperative glucose value in nondiabetic patients after colorectal surgery: evidence for the need for tight glucose control? Annals of surgery 2013; 258(4): 599–605.PubMedGoogle Scholar
  81. 81.
    Kwon S, Thompson R, Dellinger P, Yanez D, Farrohki E, Flum D. Importance of perioperative glycemic control in general surgery: a report from the Surgical Care and Outcomes Assessment Program. Annals of surgery 2013; 257(1): 8–14.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Turina M, Miller FN, Tucker CF, Polk HC. Short-term hyperglycemia in surgical patients and a study of related cellular mechanisms. Annals of surgery 2006; 243(6): 845.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Turina M, Fry DE, Polk Jr HC. Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects. Critical care medicine 2005; 33(7): 1624–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Viganò J, Cereda E, Caccialanza R, et al. Effects of preoperative oral carbohydrate supplementation on postoperative metabolic stress response of patients undergoing elective abdominal surgery. World journal of surgery 2012; 36(8): 1738–43.PubMedCrossRefGoogle Scholar
  85. 85.
    Kurosawa S. Anesthesia in patients with cancer disorders. Current Opinion in Anesthesiology 2012; 25(3): 376–84.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang Z, Wang Q, Wang W, Qin H. Randomized clinical trial to compare the effects of preoperative oral carbohydrate versus placebo on insulin resistance after colorectal surgery. British Journal of Surgery 2010; 97(3): 317–27.PubMedCrossRefGoogle Scholar
  87. 87.
    Wong-Lun-Hing E, van Dam R, Heijnen L, et al. Is Current Perioperative Practice in Hepatic Surgery Based on Enhanced Recovery After Surgery (ERAS) Principles? World journal of surgery 2014: 1–14.Google Scholar
  88. 88.
    Hughes MJ, McNally S, Wigmore SJ. Enhanced recovery following liver surgery: a systematic review and meta‐analysis. HPB 2014.Google Scholar
  89. 89.
    Ni C, Yang Y, Chang Y, et al. Fast-track surgery improves postoperative recovery in patients undergoing partial hepatectomy for primary liver cancer: A prospective randomized controlled trial. European Journal of Surgical Oncology (EJSO) 2013; 39(6): 542–7.CrossRefGoogle Scholar
  90. 90.
    Exadaktylos AK, Buggy DJ, Moriarty DC, Mascha E, Sessler DI. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology 2006; 105(4): 660.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Biki B, Mascha E, Moriarty DC, Fitzpatrick JM, Sessler DI, Buggy DJ. Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology 2008; 109(2): 180–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Wuethrich PY, Schmitz S-FH, Kessler TM, et al. Potential influence of the anesthetic technique used during open radical prostatectomy on prostate cancer-related outcome: a retrospective study. Anesthesiology 2010; 113(3): 570–6.PubMedGoogle Scholar
  93. 93.
    Gottschalk A, Ford JG, Regelin CC, et al. Association between epidural analgesia and cancer recurrence after colorectal cancer surgery. Anesthesiology 2010; 113(1): 27–34.PubMedCrossRefGoogle Scholar
  94. 94.
    Gupta A, Björnsson A, Fredriksson M, Hallböök O, Eintrei C. Reduction in mortality after epidural anaesthesia and analgesia in patients undergoing rectal but not colonic cancer surgery: a retrospective analysis of data from 655 patients in central Sweden. British journal of anaesthesia 2011; 107(2): 164–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Lin L, Liu C, Tan H, Ouyang H, Zhang Y, Zeng W. Anaesthetic technique may affect prognosis for ovarian serous adenocarcinoma: a retrospective analysis. British journal of anaesthesia 2011; 106(6): 814–22.PubMedCrossRefGoogle Scholar
  96. 96.
    de Oliveira Jr GS, Ahmad S, Schink JC, Singh DK, Fitzgerald PC, McCarthy RJ. Intraoperative neuraxial anesthesia but not postoperative neuraxial analgesia is associated with increased relapse-free survival in ovarian cancer patients after primary cytoreductive surgery. Regional anesthesia and pain medicine 2011; 36(3): 271–7.CrossRefGoogle Scholar
  97. 97.
    Tsui BC, Rashiq S, Schopflocher D, et al. Epidural anesthesia and cancer recurrence rates after radical prostatectomy. Canadian Journal of Anesthesia/Journal canadien d’anesthésie 2010; 57(2): 107–12.CrossRefGoogle Scholar
  98. 98.
    Myles PS, Peyton P, Silbert B, Hunt J, Rigg JR, Sessler DI. Perioperative epidural analgesia for major abdominal surgery for cancer and recurrence-free survival: randomised trial. BMJ 2011; 342.Google Scholar
  99. 99.
    Cummings III KC, Xu F, Cummings LC, Cooper GS. A comparison of epidural analgesia and traditional pain management effects on survival and cancer recurrence after colectomy: a population-based study. Anesthesiology 2012; 116(4): 797–806.PubMedCrossRefGoogle Scholar
  100. 100.
    Christopherson R, James KE, Tableman M, Marshall P, Johnson FE. Long-term survival after colon cancer surgery: a variation associated with choice of anesthesia. Anesthesia and analgesia 2008; 107(1): 325–32.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for Surgery of the Alimentary Tract 2014

Authors and Affiliations

  • Andrew J. Page
    • 1
  • Aslam Ejaz
    • 1
  • Gaya Spolverato
    • 1
  • Tiffany Zavadsky
    • 1
  • Michael C. Grant
    • 2
  • Daniel J. Galante
    • 1
  • Elizabeth C. Wick
    • 1
  • Matthew Weiss
    • 1
  • Martin A. Makary
    • 1
  • Christopher L. Wu
    • 2
  • Timothy M. Pawlik
    • 1
    • 3
    Email author
  1. 1.Department of SurgeryJohns Hopkins HospitalBaltimoreUSA
  2. 2.Department of AnesthesiologyJohns Hopkins HospitalBaltimoreUSA
  3. 3.Department of SurgeryJohn L. Cameron Professor of Alimentary Tract SurgeryBaltimoreUSA

Personalised recommendations