Advertisement

Journal of Gastrointestinal Surgery

, Volume 17, Issue 9, pp 1609–1617 | Cite as

Dendritic Cell-Based Immunotherapy Targeting Synthesized Peptides for Advanced Biliary Tract Cancer

  • Masanori Kobayashi
  • Tomoyo Sakabe
  • Hirofumi Abe
  • Mitsugu Tanii
  • Hidenori Takahashi
  • Asako Chiba
  • Eri Yanagida
  • Yuta Shibamoto
  • Masahiro Ogasawara
  • Shun-ichi Tsujitani
  • Shigeo Koido
  • Kazuhiro Nagai
  • Shigetaka Shimodaira
  • Masato Okamoto
  • Yoshikazu Yonemitsu
  • Noboru Suzuki
  • Masaki Nagaya
  • The DC-vaccine study group at the Japan Society of Innovative Cell Therapy (J-SICT)
Original Article

Abstract

Background

The aim of this retrospective study was to clarify the safety and efficacy of dendritic cell (DC)-based immunotherapy targeting synthesized peptides, Wilms tumor 1 (WT1) and Mucin 1, cell surface associated (MUC1) for biliary tract cancers (BTCs).

Methods

Sixty-five patients who had nonresectable, recurrent, or metastatic BTCs and received the DC-based immunotherapy were selected for the study. DCs were pulsed with WT1 and/or MUC1. The adverse events (AEs) and clinical responses were examined.

Results

No serious treatment-related AEs were observed. Median survival time (MST) from diagnosis and from the first vaccination was 18.5 and 7.2 months, respectively. By multivariate Cox proportional hazard analysis, the significant independent factors were found to be (1) combined chemotherapy, (2) albumin level ≥4.0 g/dL before vaccination, (3) C-reactive protein level <0.5 mg/dL before vaccination, and (4) fever after vaccination. The MST from the first vaccination with or without chemotherapy was 8.2 and 5.3 months, respectively (P = 0.016), and MST for the patients with prognostic nutritional index ≥40 and <40 was 8.1 and 5.0 months, respectively (P = 0.023).

Conclusions

Although a small uncontrolled nonrandomized study, DC-based immunotherapy for BTCs was safe and produced a clinical response for the patients who underwent chemotherapy and maintained a good nutrition status.

Keywords

Dendritic cell WT1 MUC1 Immunotherapy and biliary tract cancer 

Abbreviations

BTC

Biliary tract cancer

DC

Dendritic cell

WT1

Wilms tumor 1

MUC1

Mucin 1, cell surface associated

IHC staining

Immunohistochemical staining

MST

Median survival time

ORR

Objective response rate

DCR

Disease control rate

RECIST

Response Evaluation Criteria in Solid Tumors

mGPS

Modified Glasgow prognostic score

PNI

Prognostic nutritional index

CRP

C-reactive protein

Treg

Regulatory T cell

CTLs

Cytotoxic T lymphocytes

Notes

Acknowledgments

This report is dedicated to the patients who participated in our study and their primary oncology doctors. No funding supported this study.

Conflict of Interest

The authors have no financial or personal relationships with other people or organizations that could inappropriately influence our work.

Supplementary material

11605_2013_2286_MOESM1_ESM.doc (56 kb)
ESM 1 (DOC 55 kb)

References

  1. 1.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Hezel AF, Zhu AX. Systemic therapy for biliary tract cancers. Oncologist. 2008;13:415–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Bridgewater J; ABC-02 Trial Investigators. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Nagayama H, Sato K, Morishita M, Uchimaru K, Oyaizu N, Inazawa T, Yamasaki T, Enomoto M, Nakaoka T, Nakamura T, Maekawa T, Yamamoto A, Shimada S, Saida T, Kawakami Y, Asano S, Tani K, Takahashi TA, Yamashita N. Results of a phase I clinical study using autologous tumour lysate-pulsed monocyte-derived mature dendritic cell vaccinations for stage IV malignant melanoma patients combined with low dose interleukin-2. Melanoma Res. 2003;13:521–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Kimura Y, Tsukada J, Tomoda T, Takahashi H, Imai K, Shimamura K, Sunamura M, Yonemitsu Y, Shimodaira S, Koido S, Homma S, Okamoto M. Clinical and immunologic evaluation of dendritic cell-based immunotherapy in combination with gemcitabine and/or S-1 in patients with advanced pancreatic carcinoma. Pancreas. 2012;41:195–205.PubMedCrossRefGoogle Scholar
  7. 7.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF; IMPACT Study Investigators. Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. N Engl J Med. 2010;363:411–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Kuwabara K, Nishishita T, Morishita M, Oyaizu N, Yamashita S, Yamashita N, et al. Results of a phase I clinical study using dendritic cell vaccinations for thyroid cancer. Thyroid. 2007;17:53–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15:5323–37.PubMedCrossRefGoogle Scholar
  10. 10.
    Nakatsuka S, Oji Y, Horiuchi T, Kanda T, Kitagawa M, Takeuchi T, Kawano K, Kuwae Y, Yamauchi A, Okumura M, Kitamura Y, Oka Y, Kawase I, Sugiyama H, Aozasa K. Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol. 2006;19:804–14.PubMedGoogle Scholar
  11. 11.
    Ghosh M, Kamma H, Kawamoto T, Koike N, Miwa M, Kapoor VK, Krishnani N, Agrawal S, Ohkohchi N, Todoroki T. MUC 1 core protein as a marker of gallbladder malignancy. Eur J Surg Oncol. 2005;31:891–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Park SY, Roh SJ, Kim YN, Kim SZ, Park HS, Jang KY, Chung MJ, Kang MJ, Lee DG, Moon WS. Expression of MUC1, MUC2, MUC5AC and MUC6 in cholangiocarcinoma: prognostic impact. Oncol Rep. 2009;22:649–57.PubMedCrossRefGoogle Scholar
  13. 13.
    Lau SK, Weiss LM, Chu PG. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol. 2004; 122:61–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Fan XN, Karsten U, Goletz S, Cao Y. Reactivity of a humanized antibody (hPankoMab) towards a tumor-related MUC1 epitope (TA-MUC1) with various human carcinomas. Pathol Res Pract. 2010;206:585–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Matsumura N, Yamamoto M, Aruga A, Takasaki K, Nakano M. Correlation between expression of MUC1 core protein and outcome after surgery in mass-forming intrahepatic cholangiocarcinoma. Cancer. 2002;94:1770–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Onodera T, Goseki N, Nosaki G. Prognostic nutritional index in gastro-intestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi. 1984;85:1001–5.PubMedGoogle Scholar
  17. 17.
    Toiyama Y, Miki C, Inoue Y, Tanaka K, Mohri Y, Kusunoki M. Evaluation of an inflammation-based prognostic score for the identification of patients requiring postoperative adjuvant chemotherapy for stage II colorectal cancer. Exp Ther Med. 2011;2:95–101.PubMedGoogle Scholar
  18. 18.
    Okusaka T, Ishii H, Funakoshi A, Yamao K, Ohkawa S, Saito S, Saito H, Tsuyuguchi T. Phase II study of single-agent gemcitabine in patients with advanced biliary tract cancer. Cancer Chemother Pharmacol. 2006;57:647–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T, Finn OJ, Ramanathan RK. A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther. 2008;6:955–64.PubMedGoogle Scholar
  20. 20.
    Shimizu K, Kotera Y, Aruga A, Takeshita N, Takasaki K, Yamamoto M. Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2012;19:171–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Berger TG, Schultz ES. Dendritic cell-based immunotherapy. Curr Top Microbiol Immunol. 2003;276:163–97.PubMedCrossRefGoogle Scholar
  22. 22.
    Ridgway D. The first 1000 dendritic cell vaccinees. Cancer Invest. 2003;21:873–86.PubMedCrossRefGoogle Scholar
  23. 23.
    Hoos A, Eggermont AMM, Janetzki A, Hodi FS, Ibrahim R, Anderson A, Humphrey R, Blumenstein B, Old L, Wolchok J. Improved Endpoints for Cancer Immunotherapy Trials. J Natl Cancer Inst. 2010;102:1388–97.PubMedCrossRefGoogle Scholar
  24. 24.
    Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A, Macrae S, Nelson M, Canning C, Lowy I, Korman A, Lautz D, Russell S, Jaklitsch MT, Ramaiya N, Chen TC, Neuberg D, Allison JP, Mihm MC, Dranoff G. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A. 2008;105:3005–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Heys SD, Walker LG, Deehan DJ, Eremin OE. Serum albumin: a prognostic indicator in patients with colorectal cancer. J R Coll Surg Edinb. 1998;43:163–8.PubMedGoogle Scholar
  26. 26.
    Shim HJ, Yun JY, Hwang JE, Bae WK, Cho SH, Chung IJ. Prognostic factor analysis of third-line chemotherapy in patients with advanced gastric cancer. Gastric Cancer. 2011;14:249–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Ramacciato G, Corigliano N, Mercantini P, Di Benedetto F, Masetti M, Ercolani G, Lauro A, De Ruvo N, Pinna AD. Prognostic factors after surgical resection for hilar cholangiocarcinoma. Ann Chir. 2006;131:379–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Medina-Franco H, Ramos-Gallardo G, Orozco-Zepeda H, Mercado-Díaz MA. Prognostic factor in gallbladder cancer. Rev Invest Clin. 2005;57:662–5.PubMedGoogle Scholar
  29. 29.
    Fukushima K, Ueno Y, Kawagishi N, Kondo Y, Inoue J, Kakazu E, Ninomiya M, Wakui Y, Saito N, Satomi S, Shimosegawa T. The nutritional index ‘COUNT’ is useful for predicting long-term prognosis of patients with end-stage liver disease. Tohoku J Exp Med. 2011;224:215–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Okada I, Shirahata A, Soda H, Saitou M, Kigawa G, Nemoto H, Sanada Y, Hibi K. Significance of Onodera's prognostic nutritional index for treating unresectable or recurrent colorectal cancer with chemotherapy. Gan To Kagaku Ryoho. 2012;39:231–5.PubMedGoogle Scholar
  31. 31.
    Kang Sh, Cho KH, Park JW, Yoon KW, Do JY. Onodera's Prognostic Nutritional Index as a Risk Factor for Mortality in Peritoneal Dialysis Patients. J Korean Med Sci. 2012;27:1354–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Forrest LM, McMillan DC, McArdle CS, Angerson WJ, Dunlop DJ. Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer. Br J Cancer. 2003;89:1028–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Luo Y, Dorf ME. Delayed-type hypersensitivity. Curr Protoc Immunol. 2001; Chapter 4: Unit 4.5.pp1-5.Google Scholar

Copyright information

© The Society for Surgery of the Alimentary Tract 2013

Authors and Affiliations

  • Masanori Kobayashi
    • 1
    • 5
  • Tomoyo Sakabe
    • 1
  • Hirofumi Abe
    • 2
  • Mitsugu Tanii
    • 3
  • Hidenori Takahashi
    • 3
  • Asako Chiba
    • 4
  • Eri Yanagida
    • 4
  • Yuta Shibamoto
    • 5
  • Masahiro Ogasawara
    • 6
  • Shun-ichi Tsujitani
    • 7
  • Shigeo Koido
    • 8
  • Kazuhiro Nagai
    • 9
  • Shigetaka Shimodaira
    • 10
  • Masato Okamoto
    • 11
  • Yoshikazu Yonemitsu
    • 12
  • Noboru Suzuki
    • 13
  • Masaki Nagaya
    • 4
    • 13
  • The DC-vaccine study group at the Japan Society of Innovative Cell Therapy (J-SICT)
  1. 1.Seren Clinic NagoyaIsokaiNagoyaJapan
  2. 2.Seren Clinic KobeIsokaiKobeJapan
  3. 3.Seren Clinic FukuokaIsokaiFukuokaJapan
  4. 4.Seren Clinic TokyoIsokaiTokyoJapan
  5. 5.Department of RadiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
  6. 6.Department of HematologySapporo Hokuyu HospitalSapporoJapan
  7. 7.National Center for Grobal Health and MedicineTokyoJapan
  8. 8.Division of Gastroenterology and Hepatology, Department of Internal MedicineThe Jikei University School of MedicineKashiwaJapan
  9. 9.Transfusion and Cell Therapy UnitNagasaki University HospitalNagasakiJapan
  10. 10.Cell Processing CenterShinshu University HospitalMatsumotoJapan
  11. 11.Institute for Advanced Medical ResearchKeio University School of MedicineTokyoJapan
  12. 12.R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
  13. 13.Department of ImmunologySt. Marianna University School of MedicineKawasakiJapan

Personalised recommendations