Journal of Gastrointestinal Surgery

, Volume 13, Issue 8, pp 1529–1538 | Cite as

A Review of Risk Scoring Systems Utilised in Patients Undergoing Gastrointestinal Surgery

  • Aninda Chandra
  • Sudhakar Mangam
  • Deya Marzouk
Review Article



Adequate stratification and scoring of risk is essential to optimise clinical practice; the ability to predict operative mortality and morbidity is important. This review aims to outline the essential elements of available risk scoring systems in patients undergoing gastrointestinal surgery and their differences in order to enable effective utilisation.


The English literature was searched over the last 50 years to provide an overview of systems pertaining to the adult surgical patient.


Scoring systems can provide objectivity and mortality prediction enabling communication and understanding of severity of illness. Incorporating subjective factors within scoring systems can allow clinicians to apply their experience and understanding of the situation to an individual but are not reproducible. Limitations relating to obtaining variables, calculating predicted mortality and applicability were present in most systems. Over time scoring systems have become out-dated which may reflect continuing improvement in care. APACHE II shows the importance of reproducibility and comparability particularly when assessing critically ill patients. Both NSQIP in the USA and P-POSSUM in the UK seem to have many benefits which derive from their comprehensive dataset. The “Surgical Apgar” score offers relatively objective criteria which contrasts against the subjective nature of the ASA score.


P-POSSUM and NSQIP are comprehensive but are difficult to calculate. In the search for a simple and easy to calculate score, the “Surgical Apgar” score may be a potential answer. However, more studies need to be performed before it becomes as widely taken up as APACHE II, NSQIP and P-POSSUM.


Critical illness Critical care Surgery Risk assessment Peri-operative care Prognosis High dependency unit Scoring systems 



Acute Physiology and Chronic Health Evaluation


American Society of Anaesthesiologists


Alert/Voice/Pain/Unresponsive (conscious level)


British United Provident Association


Cardiac Risk Index Assessment


Intensive Care Unit


Estimation of Physiologic Ability and Stress


Glasgow Coma Scale


High Dependency Unit


Intensive Care National Audit and Research Centre


Maxillary Facial


Mortality Prediction Model


National Surgical Quality Improvement Programme




Physiological and Operative Severity Score for EnUmeration of Mortality and Morbidity


Portsmouth POSSUM


Surgical Mortality Score


Surgical Risk Score


Simplified Acute Physiology Score


Arterial Oxygen Saturations



Special thanks to Dr Jules Barwell, Senior Lecturer and Honorary Consultant in Genetics, Leicester and Dr Barry Phillips, Consultant Intensivist, Eastbourne for their support and suggestions having reviewed the paper.


  1. 1.
    National Institute for Health and Clinical Excellence. Acutely ill patients in hospital: recognition of and response to acute illness in adults in hospital. London: National Institute for Health and Clinical Excellence; 2007.Google Scholar
  2. 2.
    Cuthbertson BH, Webster NR. The role of the intensive care unit in the management of the critically ill surgical patient. J R Coll Surg Edinb. 1999;44(5):294–300.PubMedGoogle Scholar
  3. 3.
    Saklad M. Grading of patients for surgical procedures. Anesthesiology. 1941;2:281–284. doi: 10.1097/00000542-194105000-00004.CrossRefGoogle Scholar
  4. 4.
    Hartley MN, Sagar PM. The surgeon's 'gut feeling' as a predictor of post-operative outcome. Ann R Coll Surg Engl. 1994;76(Suppl(6)):277–278.PubMedGoogle Scholar
  5. 5.
    Markus PM, Martell J, Leister I, Horstmann O, Brinker J, Becker H. Predicting post-operative morbidity by clinical assessment. Br J Surg. 2005;92(1):101–106. doi: 10.1002/bjs.4608.CrossRefPubMedGoogle Scholar
  6. 6.
    Goldhill DR. Preventing surgical deaths: critical care and intensive care outreach services in the post-operative period. Br J Anaesth. 2005;95(1):88–94. doi: 10.1093/bja/aeh281.CrossRefPubMedGoogle Scholar
  7. 7.
    Owens WD, Felts JA, Spitznagel EL Jr. ASA physical status classifications: a study of consistency of ratings. Anesthesiology. 1978;49(4):239–243. doi: 10.1097/00000542-197810000-00003.CrossRefPubMedGoogle Scholar
  8. 8.
    Mak PH, Campbell RC, Irwin MG. American Society of Anesthesiologists. The ASA Physical Status Classification: inter-observer consistency. American Society of Anesthesiologists. Anaesth Intensive Care. 2002;30(5):633–640.PubMedGoogle Scholar
  9. 9.
    Wolters U, Wolf T, Stutzer H, Schroder T. ASA classification and perioperative variables as predictors of post-operative outcome. Br J Anaesth. 1996;77(2):217–222.PubMedGoogle Scholar
  10. 10.
    Sutton R, Bann S, Brooks M, Sarin S. The Surgical Risk Scale as an improved tool for risk-adjusted analysis in comparative surgical audit. Br J Surg. 2002;89(6):763–768. doi: 10.1046/j.1365-2168.2002.02080.x.CrossRefPubMedGoogle Scholar
  11. 11.
    Brooks MJ, Sutton R, Sarin S. Comparison of Surgical Risk Score, POSSUM and p-POSSUM in higher-risk surgical patients. Br J Surg. 2005;92(10):1288–1292. doi: 10.1002/bjs.5058.CrossRefPubMedGoogle Scholar
  12. 12.
    Neary WD, Prytherch DR, Foy C, Heather BP, Earnshaw JJ. Comparison of different methods of risk stratification in urgent and emergency surgery. Br J Surg. 2007;94(10):1300–1305. doi: 10.1002/bjs.5809.CrossRefPubMedGoogle Scholar
  13. 13.
    Goldman L, Caldera DL, Nussbaum SR, Southwick FS, Krogstad D, Murray B, et al. Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med. 1977;297(16):845–850.PubMedGoogle Scholar
  14. 14.
    Detsky AS, Abrams HB, McLaughlin JR, Drucker DJ, Sasson Z, Johnston N, et al. Predicting cardiac complications in patients undergoing non-cardiac surgery. J Gen Intern Med. 1986;1(4):211–219. doi: 10.1007/BF02596184.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee TH, Marcantonio ER, Mangione CM, Thomas EJ, Polanczyk CA, Cook EF, et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999;100(10):1043–1049.PubMedGoogle Scholar
  16. 16.
    Halm EA, Browner WS, Tubau JF, Tateo IM, Mangano DT. Echocardiography for assessing cardiac risk in patients having noncardiac surgery. Study of Perioperative Ischemia Research Group. Ann Intern Med. 1996;125(6):433–441.PubMedGoogle Scholar
  17. 17.
    Rohde LE, Polanczyk CA, Goldman L, Cook EF, Lee RT, Lee TH. Usefulness of transthoracic echocardiography as a tool for risk stratification of patients undergoing major noncardiac surgery. Am J Cardiol. 2001;87(5):505–509. doi: 10.1016/S0002-9149(00)01421-1.CrossRefPubMedGoogle Scholar
  18. 18.
    Prause G, Ratzenhofer-Comenda B, Pierer G, Smolle-Juttner F, Glanzer H, Smolle J. Can ASA grade or Goldman's cardiac risk index predict peri-operative mortality? A study of 16,227 patients. Anaesthesia. 1997;52(3):203–206. doi: 10.1111/j.1365-2044.1997.074-az0074.x.CrossRefPubMedGoogle Scholar
  19. 19.
    Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981;9(8):591–7.PubMedGoogle Scholar
  20. 20.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–829. doi: 10.1097/00003246-198510000-00009.CrossRefPubMedGoogle Scholar
  21. 21.
    Goffi L, Saba V, Ghiselli R, Necozione S, Mattei A, Carle F. Preoperative APACHE II and ASA scores in patients having major general surgical operations: prognostic value and potential clinical applications. Eur J Surg. 1999;165(8):730–735. doi: 10.1080/11024159950189483.CrossRefPubMedGoogle Scholar
  22. 22.
    Barie PS, Hydo LJ, Fischer E. Utility of illness severity scoring for prediction of prolonged surgical critical care. J Trauma. 1996;40(4):513–518. doi: 10.1097/00005373-199604000-00002.CrossRefPubMedGoogle Scholar
  23. 23.
    Beck DH, Taylor BL, Millar B, Smith GB. Prediction of outcome from intensive care: a prospective cohort study comparing Acute Physiology and Chronic Health Evaluation II and III prognostic systems in a United Kingdom intensive care unit. Crit Care Med. 1997;25(1):9–15. doi: 10.1097/00003246-199701000-00006.CrossRefPubMedGoogle Scholar
  24. 24.
    Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Crit Care Med. 2006;34(5):1297–1310. doi: 10.1097/01.CCM.0000215112.84523.F0.CrossRefPubMedGoogle Scholar
  25. 25.
    Zimmerman JE, Kramer AA, McNair DS, Malila FM, Shaffer VL. Intensive care unit length of stay: Benchmarking based on Acute Physiology and Chronic Health Evaluation (APACHE) IV. Crit Care Med. 2006;34(10):2517–2529. doi: 10.1097/01.CCM.0000240233.01711.D9.CrossRefPubMedGoogle Scholar
  26. 26.
    Harrison DA, Parry GJ, Carpenter JR, Short A, Rowan K. A new risk prediction model for critical care: the Intensive Care National Audit & Research Centre (ICNARC) model. Crit Care Med. 2007;35(4):1091–1098. doi: 10.1097/01.CCM.0000259468.24532.44. see comment.CrossRefPubMedGoogle Scholar
  27. 27.
    Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–2963. doi: 10.1001/jama.270.24.2957.CrossRefPubMedGoogle Scholar
  28. 28.
    Capuzzo M, Valpondi V, Sgarbi A, Bortolazzi S, Pavoni V, Gilli G, et al. Validation of severity scoring systems SAPS II and APACHE II in a single-center population. Intensive Care Med. 2000;26(12):1779–1785. doi: 10.1007/s001340000715.CrossRefPubMedGoogle Scholar
  29. 29.
    Metnitz PG, Valentin A, Vesely H, Alberti C, Lang T, Lenz K, et al. Hiesmayr M. Prognostic performance and customization of the SAPS II: results of a multicenter Austrian study. Simplified Acute Physiology Score. Intensive Care Med. 1999;25(2):192–197. doi: 10.1007/s001340050815.CrossRefPubMedGoogle Scholar
  30. 30.
    Le Gall JR, Neumann A, Hemery F, Bleriot JP, Fulgencio JP, Garrigues B, et al. Mortality prediction using SAPS II: an update for French intensive care units. Crit Care. 2005;9(6):R645–R652. doi: 10.1186/cc3821.CrossRefPubMedGoogle Scholar
  31. 31.
    Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, et al. SAPS 3--From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31(10):1345–1355. doi: 10.1007/s00134-005-2763-5.CrossRefPubMedGoogle Scholar
  32. 32.
    Cuthbertson BH, Boroujerdi M, McKie L, Aucott L, Prescott G. Can physiological variables and early warning scoring systems allow early recognition of the deteriorating surgical patient? Crit Care Med. 2007;35(2):402–409. doi: 10.1097/01.CCM.0000254826.10520.87.CrossRefPubMedGoogle Scholar
  33. 33.
    Subbe CP, Kruger M, Rutherford P, Gemmel L. Validation of a modified Early Warning Score in medical admissions. QJM. 2001;94(10):521–526. doi: 10.1093/qjmed/94.10.521.CrossRefPubMedGoogle Scholar
  34. 34.
    Goldhill DR. The critically ill: following your MEWS. QJM. 2001;94(10):507–510. doi: 10.1093/qjmed/94.10.507.CrossRefPubMedGoogle Scholar
  35. 35.
    Teres D, Lemeshow S, Avrunin JS, Pastides H. Validation of the mortality prediction model for ICU patients. Crit Care Med. 1987;15(3):208–213.PubMedCrossRefGoogle Scholar
  36. 36.
    Shann F. Mortality prediction model is preferable to APACHE. BMJ. 2000;320(7236):714. doi: 10.1136/bmj.320.7236.714.CrossRefPubMedGoogle Scholar
  37. 37.
    Higgins TL, Teres D, Copes WS, Nathanson BH, Stark M, Kramer AA. Assessing contemporary intensive care unit outcome: an updated Mortality Probability Admission Model (MPM0-III). Crit Care Med. 2007;35(3):827–835. doi: 10.1097/01.CCM.0000257337.63529.9F.CrossRefPubMedGoogle Scholar
  38. 38.
    Copeland GP, Jones D, Walters M. POSSUM: a scoring system for surgical audit. Br J Surg. 1991;78(3):355–360. doi: 10.1002/bjs.1800780327.CrossRefPubMedGoogle Scholar
  39. 39.
    Copeland GP. The POSSUM system of surgical audit. Arch Surg. 2002;137(1):15–19. doi: 10.1001/archsurg.137.1.15.CrossRefPubMedGoogle Scholar
  40. 40.
    Hariharan S, Zbar A. Risk scoring in perioperative and surgical intensive care patients: a review. Curr Surg. 2006;63(3):226–236. doi: 10.1016/j.cursur.2006.02.005.CrossRefPubMedGoogle Scholar
  41. 41.
    Lagarde SM, Maris AK, de Castro SM, Busch OR, Obertop H, van Lanschot JJ. Evaluation of O-POSSUM in predicting in-hospital mortality after resection for oesophageal cancer. Br J Surg. 2007;94(12):1521–1526. doi: 10.1002/bjs.5850.CrossRefPubMedGoogle Scholar
  42. 42.
    Tekkis PP, McCulloch P, Poloniecki JD, Prytherch DR, Kessaris N, Steger AC. Risk-adjusted prediction of operative mortality in oesophagogastric surgery with O-POSSUM. Br J Surg. 2004;91(3):288–895. doi: 10.1002/bjs.4414.CrossRefPubMedGoogle Scholar
  43. 43.
    Senagore AJ, Warmuth AJ, Delaney CP, Tekkis PP, Fazio VW. POSSUM, p-POSSUM, and Cr-POSSUM: implementation issues in a United States health care system for prediction of outcome for colon cancer resection. Dis Colon Rectum. 2004;47(9):1435–1441.PubMedGoogle Scholar
  44. 44.
    Vather R, Zargar-Shoshtari K, Adegbola S, Hill AG. Comparison of the possum, P-POSSUM and Cr-POSSUM scoring systems as predictors of post-operative mortality in patients undergoing major colorectal surgery. ANZ J Surg. 2006;76(9):812–816. doi: 10.1111/j.1445-2197.2006.03875.x.CrossRefPubMedGoogle Scholar
  45. 45.
    Whiteley MS, Prytherch DR, Higgins B, Weaver PC, Prout WG. An evaluation of the POSSUM surgical scoring system. Br J Surg. 1996;83(6):812–815. doi: 10.1002/bjs.1800830628.CrossRefPubMedGoogle Scholar
  46. 46.
    Prytherch DR, Whiteley MS, Higgins B, Weaver PC, Prout WG, Powell SJ. POSSUM and Portsmouth POSSUM for predicting mortality. Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity. Br J Surg. 1998;85(9):1217–1220. doi: 10.1046/j.1365-2168.1998.00840.x.CrossRefPubMedGoogle Scholar
  47. 47.
    Haga Y, Ikei S, Wada Y, Takeuchi H, Sameshima H, Kimura O, et al. Evaluation of an Estimation of Physiologic Ability and Surgical Stress (E-PASS) scoring system to predict post-operative risk: a multicenter prospective study. Surg Today. 2001;31(7):569–574. doi: 10.1007/s005950170088.CrossRefPubMedGoogle Scholar
  48. 48.
    Haga Y, Wada Y, Takeuchi H, Kimura O, Furuya T, Sameshima H, et al. Estimation of physiologic ability and surgical stress (E-PASS) for a surgical audit in elective digestive surgery. Surgery. 2004;135(6):586–594. doi: 10.1016/j.surg.2003.11.012.CrossRefPubMedGoogle Scholar
  49. 49.
    Oka Y, Nishijima J, Oku K, Azuma T, Inada K, Miyazaki S, et al. Usefulness of an estimation of physiologic ability and surgical stress (E-PASS) scoring system to predict the incidence of post-operative complications in gastrointestinal surgery. World J Surg. 2005;29(8):1029–1033. doi: 10.1007/s00268-005-7719-y.CrossRefPubMedGoogle Scholar
  50. 50.
    Khuri SF, Daley J, Henderson W, Hur K, Gibbs JO, Barbour G, et al. Risk adjustment of the post-operative mortality rate for the comparative assessment of the quality of surgical care: results of the National Veterans Affairs Surgical Risk Study. J Am Coll Surg. 1997;185(4):315–327.PubMedGoogle Scholar
  51. 51.
    Aust JB, Henderson W, Khuri S, Page CP. The impact of operative complexity on patient risk factors. Ann Surg. 2005;241(6):1024–1027. doi: 10.1097/01.sla.0000165196.32207.dd.CrossRefPubMedGoogle Scholar
  52. 52.
    Gawande AA, Kwaan MR, Regenbogen SE, Lipsitz SA, Zinner MJ. An Apgar Score for Surgery. J Am Coll Surg. 2007;204(2):201–208. doi: 10.1016/j.jamcollsurg.2006.11.011.CrossRefPubMedGoogle Scholar
  53. 53.
    Hadjianastassiou VG, Tekkis PP, Poloniecki JD, Gavalas MC, Goldhill DR. Surgical mortality score: risk management tool for auditing surgical performance. World J Surg. 2004;28(2):193–200. doi: 10.1007/s00268-003-7174-6.CrossRefPubMedGoogle Scholar
  54. 54.
    Kramer AA. Predictive mortality models are not like fine wine. Crit Care. 2005;9(6):636–637. doi: 10.1186/cc3899.CrossRefPubMedGoogle Scholar
  55. 55.
    Lee A, Lum ME, O'Regan WJ, Hillman KM. Early post-operative emergencies requiring an intensive care team intervention. The role of ASA physical status and after-hours surgery. Anaesthesia. 1998;53(6):529–535. doi: 10.1046/j.1365-2044.1998.00395.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Goldhill DR, Sumner A. Outcome of intensive care patients in a group of British intensive care units. Crit Care Med. 1998;26(8):1337–1345. doi: 10.1097/00003246-199808000-00017.CrossRefPubMedGoogle Scholar
  57. 57.
    Hall JC, Hall JL. ASA status and age predict adverse events after abdominal surgery. J Qual Clin Pract. 1996;16(2):103–108.PubMedGoogle Scholar

Copyright information

© The Society for Surgery of the Alimentary Tract 2009

Authors and Affiliations

  • Aninda Chandra
    • 1
    • 3
  • Sudhakar Mangam
    • 2
  • Deya Marzouk
    • 2
  1. 1.Department of General SurgeryPrincess Royal University HospitalFarnboroughUK
  2. 2.Department of Colorectal SurgeryQueen Elizabeth Queen Mother HospitalMargateUK
  3. 3.BuckinghamshireUK

Personalised recommendations