Journal of Gastrointestinal Surgery

, Volume 12, Issue 1, pp 17–29

Telomere Shortening and Telomerase Expression during Multistage Carcinogenesis of Intraductal Papillary Mucinous Neoplasms of the Pancreas

  • Yasushi Hashimoto
  • Yoshiaki Murakami
  • Kenichiro Uemura
  • Yasuo Hayashidani
  • Takeshi Sudo
  • Hiroki Ohge
  • Emi Fukuda
  • Fumio Shimamoto
  • Taijiro Sueda
  • Eiso Hiyama
SSAT plenery paper


Intraductal papillary mucinous neoplasm (IPMN) of the pancreas has been increasingly identified as a precursor to infiltrating ductal adenocarcinoma. Telomerase activation in response to telomere crisis followed by telomere shortening is thought to be a crucial event in the development of most human cancers. The aim of this study was to determine when this event occurs in the context of histologically defined IPMN progression. We analyzed telomerase expression in 68 IPMN samples and assessed telomere length by quantitative fluorescence in situ hybridization in samples taken from 17 sequential IPMN patients that included 37 individual loci. Samples from pancreatic ductal adenocarcinomas (PDACs, n = 15) and chronic pancreatitis patients (n = 10) were also examined. Telomeres were significantly shortened in 36 (97.3%) of 37 IPMN loci, with average telomere length decreasing with IPMN progression. Notably, even adenoma IPMNs demonstrated a 50% reduction of telomere length in 7 of 14 foci examined. Marked telomere shortening was observed from the in situ IPMN carcinoma stage (P < 0.001; vs borderline IPMNs) through the invasive stage, although telomerase had been activated, indicating that telomeres had shortened to a critical length by this histological grade. Up-regulated human telomerase reverse transcriptase expression was detectable and increased gradually with cancer development and was primarily observed at the borderline IPMN stage and then in more advanced histopathologies. Progressive telomere shortening predominantly occurs during early IPMNs carcinogenesis before telomerase activation and progression from borderline to carcinoma in situ IPMNs is the critical stage of IPMNs carcinogenesis at which telomere dysfunction occurs.


Intraductal papillary mucinous neoplasm (IPMN) Telomere shortening Telomerase Human telomerase reverse transcriptase (hTERT) Pancreatic cancer Carcinogenesis 



intraductal papillary mucinous neoplasm


human telomerase reverse transcriptase




quantitative fluorescence in situ hybridization


telomeric repeat amplification protocol


pancreatic ductal adenocarcinoma


telomerase substrate


total product generated


telomere fluorescence intensity


alternative lengthening for telomeres


  1. 1.
    Sohn TA, Yeo CJ, Cameron JL, Hruban RH, Fukushima N, Campbell KA, Lillemoe KD. Intraductal papillary mucinous neoplasms of the pancreas: an updated experience. Ann Surg. 2004;239:788–797. (discussion 797–799).PubMedCrossRefGoogle Scholar
  2. 2.
    Couvelard A, Sauvanet A, Kianmanesh R, Hammel P, Colnot N, Levy P, Ruszniewski P, Bedossa P, Belghiti J. Frozen sectioning of the pancreatic cut surface during resection of intraductal papillary mucinous neoplasms of the pancreas is useful and reliable: a prospective evaluation. Ann Surg. 2005;242:774–778. (discussion 778–780).PubMedCrossRefGoogle Scholar
  3. 3.
    Klöppel G, Solcia E, Longnecker DS, Capella C, Sobin LH. World Health Organization International Histological Typing of Tumours of the Exocrine Pancreas. Berlin: Springer, 1996.Google Scholar
  4. 4.
    Tanaka M, Chari S, Adsay V, Fernandez-del Castillo C, Falconi M, Shimizu M, Yamaguchi K, Yamao K, Matsuno S. International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology. 2006;6:17–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Murakami Y, Uemura K, Ohge H, Hayashidani Y, Sudo T, Sueda T. Intraductal papillary-mucinous neoplasms and mucinous cystic neoplasms of the pancreas differentiated by ovarian-type stroma. Surgery. 2006;140:448–453.PubMedCrossRefGoogle Scholar
  6. 6.
    Adsay NV, Longnecker DS, Klimstra DS. Pancreatic tumors with cystic dilatation of the ducts: intraductal papillary mucinous neoplasms and intraductal oncocytic papillary neoplasms. Semin Diagn Pathol. 2000;17:16–30.PubMedGoogle Scholar
  7. 7.
    Tanaka M. Intraductal papillary mucinous neoplasm of the pancreas: diagnosis and treatment. Pancreas. 2004;28:282–288.PubMedCrossRefGoogle Scholar
  8. 8.
    Uemura K, Hiyama E, Murakami Y, Kanehiro T, Ohge H, Sueda T, Yokoyama T. Comparative analysis of K-ras point mutation, telomerase activity, and p53 overexpression in pancreatic tumours. Oncol Rep. 2003;10:277–283.PubMedGoogle Scholar
  9. 9.
    Sessa F, Solcia E, Capella C, Bonato M, Scarpa A, Zamboni G, Pellegata NS, Ranzani GN, Rickaert F, Klöppel G. Intraductal papillary-mucinous tumours represent a distinct group of pancreatic neoplasms: an investigation of tumour cell differentiation and K-ras, p53 and c-erbB-2 abnormalities in 26 patients. Virchows Arch. 1994;425:357–367.PubMedCrossRefGoogle Scholar
  10. 10.
    Biankin AV, Biankin SA, Kench JG, Morey AL, Lee CS, Head DR, Eckstein RP, Hugh TB, Henshall SM, Sutherland RL. Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut. 2002;50:861–868.PubMedCrossRefGoogle Scholar
  11. 11.
    Z’Graggen K, Rivera JA, Compton CC, Pins M, Werner J, Fernandez-del Castillo C, Rattner DW, Lewandrowski KB, Rustgi AK, Warshaw AL. Prevalence of activating K-ras mutations in the evolutionary stages of neoplasia in intraductal papillary mucinous tumors of the pancreas. Ann Surg. 1997;226:491–498. (discussion 498–500).PubMedCrossRefGoogle Scholar
  12. 12.
    Sohn TA, Yeo CJ, Cameron JL, Iacobuzio-Donahue CA, Hruban RH, Lillemoe KD. Intraductal papillary mucinous neoplasms of the pancreas: an increasingly recognized clinicopathologic entity. Ann Surg. 2001;234:313–321. (discussion 321–322).PubMedCrossRefGoogle Scholar
  13. 13.
    Sato N, Ueki T, Fukushima N, Iacobuzio-Donahue CA, Yeo CJ, Cameron JL, Hruban RH, Goggins M. Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology. 2002;123:365–372.PubMedCrossRefGoogle Scholar
  14. 14.
    Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. Embo J. 1992;11:1921–1929.PubMedGoogle Scholar
  15. 15.
    Hiyama K, Ishioka S, Shirotani Y, Inai K, Hiyama E, Murakami I, Isobe T, Inamizu T, Yamakido M. Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. Oncogene. 1995;10:937–944.PubMedGoogle Scholar
  16. 16.
    Hackett JA, Greider CW. Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene. 2002;21:619–626.PubMedCrossRefGoogle Scholar
  17. 17.
    Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature. 2000;406:641–655.PubMedCrossRefGoogle Scholar
  18. 18.
    Blackburn EH. Structure and function of telomeres. Nature. 1991;350:569–573.PubMedCrossRefGoogle Scholar
  19. 19.
    van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997;385:740–743.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–2015.PubMedCrossRefGoogle Scholar
  21. 21.
    Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–460.PubMedCrossRefGoogle Scholar
  22. 22.
    O’Hagan RC, Chang S, Maser RS, Mohan R, Artandi SE, Chin L, DePinho RA. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell. 2002;2:149–155.PubMedCrossRefGoogle Scholar
  23. 23.
    Maser RS, DePinho RA. Connecting chromosomes, crisis, and cancer. Science. 2002;297:565–569.PubMedCrossRefGoogle Scholar
  24. 24.
    Hiyama E, Hiyama K. Clinical utility of telomerase in cancer. Oncogene. 2002;21:643–649.PubMedCrossRefGoogle Scholar
  25. 25.
    Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997;277:955–959.PubMedCrossRefGoogle Scholar
  26. 26.
    Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–352.PubMedCrossRefGoogle Scholar
  27. 27.
    Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33:787–791.PubMedCrossRefGoogle Scholar
  28. 28.
    Miyazu YM, Miyazawa T, Hiyama K, Kurimoto N, Iwamoto Y, Matsuura H, Kanoh K, Kohno N, Nishiyama M, Hiyama E. Telomerase expression in noncancerous bronchial epithelia is a possible marker of early development of lung cancer. Cancer Res. 2005;65:9623–9627.PubMedCrossRefGoogle Scholar
  29. 29.
    Longnecker DS, Adler G, Hruban RH, Klöppel G. Intraductal papillary-mucinous neoplasms of the pancreas. In: Hamilton SR Aaltonen LA, editor. World health organization classification of tumors. Pathology and genetics of tumors of the digestive system. Lyon: IARC Press; 2000. p. 237–241.Google Scholar
  30. 30.
    Hiyama E, Yamaoka H, Matsunaga T, Hayashi Y, Ando H, Suita S, Horie H, Kaneko M, Sasaki F, Hashizume K, Nakagawara A, Ohnuma N, Yokoyama T. High expression of telomerase is an independent prognostic indicator of poor outcome in hepatoblastoma. Br J Cancer. 2004;91:972–979.PubMedGoogle Scholar
  31. 31.
    Hiyama E, Hiyama K, Yokoyama T, Shay JW. Immunohistochemical detection of telomerase (hTERT) protein in human cancer tissues and a subset of cells in normal tissues. Neoplasia. 2001;3:17–26.PubMedCrossRefGoogle Scholar
  32. 32.
    Meeker AK, Gage WR, Hicks JL, Simon I, Coffman JR, Platz EA, March GE, De Marzo AM. Telomere length assessment in human archival tissues: combined telomere fluorescence in situ hybridization and immunostaining. Am J Pathol. 2002;160:1259–1268.PubMedGoogle Scholar
  33. 33.
    Artandi SE, Alson S, Tietze MK, Sharpless NE, Ye S, Greenberg RA, Castrillon DH, Horner JW, Weiler SR, Carrasco RD, DePinho RA. Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc Natl Acad Sci U S A. 2002;99:8191–8196.PubMedCrossRefGoogle Scholar
  34. 34.
    Meeker AK, Hicks JL, Iacobuzio-Donahue CA, Montgomery EA, Westra WH, Chan TY, Ronnett BM, De Marzo AM. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res. 2004;10:3317–3326.PubMedCrossRefGoogle Scholar
  35. 35.
    Meeker AK, Hicks JL, Platz EA, March GE, Bennett CJ, Delannoy MJ, De Marzo AM. Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res. 2002;62:6405–6409.PubMedGoogle Scholar
  36. 36.
    Li S, Rosenberg JE, Donjacour AA, Botchkina IL, Hom YK, Cunha GR, Blackburn EH. Rapid inhibition of cancer cell growth induced by lentiviral delivery and expression of mutant-template telomerase RNA and anti-telomerase short-interfering RNA. Cancer Res. 2004;64:4833–4840.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith LL, Coller HA, Roberts JM. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol. 2003;5:474–479.PubMedCrossRefGoogle Scholar
  38. 38.
    Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med. 1997;3:1271–1274.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for Surgery of the Alimentary Tract 2007

Authors and Affiliations

  • Yasushi Hashimoto
    • 1
  • Yoshiaki Murakami
    • 1
  • Kenichiro Uemura
    • 1
  • Yasuo Hayashidani
    • 1
  • Takeshi Sudo
    • 1
  • Hiroki Ohge
    • 1
  • Emi Fukuda
    • 1
  • Fumio Shimamoto
    • 4
  • Taijiro Sueda
    • 1
  • Eiso Hiyama
    • 2
    • 3
  1. 1.Department of Surgery, Division of Clinical Medical Science, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Department of Biomedicine, Division of Clinical Medical Science, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
  3. 3.Natural Science Center of Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
  4. 4.Department of Pathology, Faculty of Human Culture and SciencePrefectural University of HiroshimaHiroshimaJapan

Personalised recommendations