Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas
- 67 Downloads
- 1 Citations
Abstract
Purpose
To assess the performance of texture analysis of conventional magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) maps in predicting IDH1 status in high-grade gliomas (HGG).
Materials and methods
A total of 142 patients with HGG were included in the study. IDH1 mutation was present in 48 of 142 HGG (33.8%). Patients were randomly divided into the training cohort (n = 96) and the validation cohort (n = 46). Texture features were extracted via regions of interest on axial T2WI FLAIR, post-contrast T1WI, and ADC maps covering the whole volume of the tumors. The training cohort was used to train the random forest classifier, and the diagnostic performance of the pre-trained model was tested on the validation cohort.
Results
The random forest model of conventional MRI sequences and ADC images achieved diagnostic accuracy of 82.2% and 80.4% in predicting IDH1 status in the validation cohorts, respectively. The combined model of T2WI FLAIR, post-contrast T1WI, and ADC images exhibited the highest diagnostic accuracy equating 86.94% in the validation cohort.
Conclusion
Texture analysis of conventional MRI sequences enhanced by ML analysis can accurately predict the IDH1 status of HGG. Adding textural analysis of ADC maps to conventional MRI results in incremental diagnostic performance.
Keywords
Artificial intelligence IDH1 Gliomas Machine-learning Texture analysisNotes
Compliance with ethical standards
Conflict of interest
All authors declare that they have no conflict of interest.
Ethical Statement
The local ethics committee approved this retrospective study conducted between January 2011 and May 2019. The committee waived the need for informed consent for the de-identified use of medical and radiological data. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
Supplementary material
References
- 1.Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017;18:e315–29. https://doi.org/10.1016/S1470-2045(17)30194-8.CrossRefPubMedGoogle Scholar
- 2.Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20. https://doi.org/10.1007/s00401-016-1545-1.CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Weller M, Pfister SM, Wick W, Hegi ME, Reifenberger G, Stupp R. Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol. 2013;14:e370–9. https://doi.org/10.1016/S1470-2045(13)70168-2.CrossRefPubMedGoogle Scholar
- 4.Song Tao Q, Lei Y, Si G, Yan Qing D, Hui Xia H, Xue Lin Z, et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 2012;103:269–73. https://doi.org/10.1111/j.1349-7006.2011.02134.x.CrossRefGoogle Scholar
- 5.Ellingson BM. Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep. 2015;15:506. https://doi.org/10.1007/s11910-014-0506-0.CrossRefPubMedGoogle Scholar
- 6.Qi SS, Yu L, Li H, Ou Y, Qiu X, Ding Y, et al. Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms. Oncol Lett. 2014;7:1895–902.CrossRefGoogle Scholar
- 7.Metellus P, Coulibaly B, Colin C, de Paula AM, Vasiljevic A, Taieb D, et al. Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol. 2010;120:719–29. https://doi.org/10.1007/s00401-010-0777-8.CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Kickingereder P, Sahm F, Radbruch A, Wick W, Heiland S, Deimling AV, et al. IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non invasively predictable with rCBV imaging in human glioma. Sci Rep. 2015;5:16238. https://doi.org/10.1038/srep16238.CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Biller A, Badde S, Nagel A, Neumann JO, Wick W, Hertenstein A, et al. Improved brain tumor classification by sodium MR imaging: prediction of IDH mutation status and tumor progression. AJNR Am J Neuroradiol. 2016;37:66–73. https://doi.org/10.3174/ajnr.A4493.CrossRefPubMedGoogle Scholar
- 10.Pope WB, Prins RM, Albert Thomas M, Nagarajan R, Yen KE, Bittinger MA, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol. 2012;107:197–205. https://doi.org/10.1007/s11060-011-0737-8.CrossRefPubMedGoogle Scholar
- 11.Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278:563–77. https://doi.org/10.1148/radiol.2015151169.CrossRefPubMedPubMedCentralGoogle Scholar
- 12.van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77:e104–7. https://doi.org/10.1158/0008-5472.CAN-17-0339.CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Park YW, Han K, Ahn SS, Bae S, Choi YS, Chang JH, et al. Prediction of IDH1-mutation and 1p/-19q-codeletion status using pre-operative MR imaging phenotypes in lower grade gliomas. AJNR Am J Neuroradiol. 2018;39:47. https://doi.org/10.3174/ajnr.A5421.CrossRefGoogle Scholar
- 14.Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep learning based radiomics (DLR) and its usage in non-invasive IDH1 prediction for low grade glioma. Sci. Rep. 2017;7:5467. https://doi.org/10.1038/s41598-017-05848-2.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Yu J, Shi Z, Lian Y, Li Z, Liu T, Gao Y, et al. Non-invasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur Radiol. 2017;27:3509–22. https://doi.org/10.1007/s00330-016-4653-3.CrossRefPubMedGoogle Scholar
- 16.Zhang B, Chang K, Ramkissoon SS, Tanguturi S, Bi WL, Reardon DA, et al. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol. 2017;19:109–17. https://doi.org/10.1093/neuonc/now121.CrossRefPubMedGoogle Scholar
- 17.Sonoda Y, Shibahara I, Kawaguchi T, Saito R, Kanamori M, Watanabe M, et al. Association between molecuar alterations and tumor location and MRI characteristics in anaplastic gliomas. Brain Tumor Pathol. 2015;32:99–104. https://doi.org/10.1007/s10014-014-0211-3.CrossRefPubMedGoogle Scholar
- 18.Yamashita K, Hiwatashi A, Togao O, Kikuchi K, Hatae R, Yoshimoto K, et al. MR imaging-based analysis of glioblastoma multiforme: estimation of IDH1 mutation status. AJNR Am J Neuroradiol. 2016;37:58–65. https://doi.org/10.3174/ajnr.A4491.CrossRefPubMedGoogle Scholar
- 19.Reuss DE, Sahm F, Schrimpf D, Wiestler B, Capper D, Koelsche C, et al. ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol. 2015;129:133–46. https://doi.org/10.1007/s00401-014-1370-3.CrossRefPubMedGoogle Scholar
- 20.Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys. 2017;44:1050–62. https://doi.org/10.1002/mp.12123.CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Szczypiński PM, Klepaczko A. MaZda-A Framework for biomedical image texture analysis and data exploration. Biomed Texture Anal. 2017;315–47.Google Scholar
- 22.Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, et al. Texture indexes and gray level size zone matrix application to cell nuclei classification. Pattern Recogn Inform Process. 2009;140–5.Google Scholar
- 23.Mao J, Jain AK. Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recogn. 1992;25:173–88.CrossRefGoogle Scholar
- 24.Frank E, Hall AM, Witten I. The WEKA Workbench. Online Appendix for “Data mining: practical machine learning tools and technique”, Morgan Kaufmann, 4th edn., 2016.Google Scholar
- 25.Breiman L. Random forests. Mach Learn. 2001;45:5–32.CrossRefGoogle Scholar
- 26.Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Stat Surv. 2010;4:40–79.CrossRefGoogle Scholar
- 27.Kocak B. Durmaz ES, Ates E, Kilickesmez O. Radiomics with artificial intelligence: a practical guide for beginners. Diagn Interv Radiol. https://doi.org/10.5152/dir.2019.19321.CrossRefGoogle Scholar
- 28.Bisdas S, Shen H, Thust S, Katsaros V, Stranjalis G, Boskos C, et al. Texture analysis-and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci Rep. 2018;8:6108. https://doi.org/10.1038/s41598-018-24438-4.CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Han L, Wang S, Miao Y, Shen H, Guo Y, Xie L, et al. MRI texture analysis based on 3D tumor measurement reflects the IDH1 mutations in gliomas—a preliminary study. Eur J Radiol. 2019;112.169–179. https://doi.org/10.1016/j.ejrad.2019.01.025.CrossRefGoogle Scholar
- 30.Su CQ, Lu SS, Zhou MD, Shen H, Shi HB, Hong XN. Combined texture analysis of diffusion-weighted imaging with conventional MRI for non-invasive assessment of IDH1 mutation in anaplastic gliomas. Clin Radiol. 2019;74:154–60. https://doi.org/10.1016/j.crad.2018.10.002.CrossRefPubMedGoogle Scholar
- 31.Lewis MA, Ganeshan B, Barnes A, Bisdas S, Jaunmuktane Z, Brandner SS, et al. Filtration-histogram based magnetic resonance texture analysis (MRTA) for glioma IDH and 1p19q genotyping. Eur J Radiol. 2019;113:116–23. https://doi.org/10.1016/j.ejrad.2019.02.014.CrossRefPubMedGoogle Scholar
- 32.Zhou H, Chang K, Bai HX, Xiao B, Su C, Bi WL, et al. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low-and high-grade gliomas. J Neurooncol. 2019;142:299–307. https://doi.org/10.1007/s11060-019-03096-0.CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Balagurunathan Y, Kumar V, Gu Y, Kim J, Wang H, Liu Y, et al. Test–retest reproducibility analysis of lung CT image features. J Digit Imaging. 2014;27:805–23. https://doi.org/10.1007/s10278-014-9716-x.CrossRefPubMedPubMedCentralGoogle Scholar