Advertisement

Guideline on the use of iodinated contrast media in patients with kidney disease 2018

  • Yoshitaka IsakaEmail author
  • Hiromitsu Hayashi
  • Kazutaka Aonuma
  • Masaru Horio
  • Yoshio Terada
  • Kent Doi
  • Yoshihide Fujigaki
  • Hideo Yasuda
  • Taichi Sato
  • Tomoyuki Fujikura
  • Ryohei Kuwatsuru
  • Hiroshi Toei
  • Ryusuke Murakami
  • Yoshihiko Saito
  • Atsushi Hirayama
  • Toyoaki Murohara
  • Akira Sato
  • Hideki Ishii
  • Tadateru Takayama
  • Makoto Watanabe
  • Kazuo Awai
  • Seitaro Oda
  • Takamichi Murakami
  • Yukinobu Yagyu
  • Nobuhiko Joki
  • Yasuhiro Komatsu
  • Takamasa Miyauchi
  • Yugo Ito
  • Ryo Miyazawa
  • Yoshihiko Kanno
  • Tomonari Ogawa
  • Hiroki Hayashi
  • Eri Koshi
  • Tomoki Kosugi
  • Yoshinari Yasuda
  • Japanese Society of Nephrology, Japan Radiological Society, and Japanese Circulation Society Joint Working Group
Special Report

1. Outline of the revised version of the guideline on the use of iodinated contrast media in patients with kidney disease

1.1 Purpose of the revision of the guideline

Diagnostic imaging using iodinated contrast media is an essential procedure in the clinical setting and provides a large amount of beneficial information. However, the use of iodinated contrast media may cause contrast-induced nephropathy (CIN) in patients with chronic kidney disease (CKD). Therefore, the Japan Radiological Society (JRS), the Japanese Circulation Society (JCS), and the Japanese Society of Nephrology (JSN) collaborated and published a guideline on the use of iodinated contrast media in patients with kidney disease (CIN guideline 2012).

The aim of the CIN guideline 2012 was to ensure the prevention of kidney injury induced by iodinated contrast media by promoting the appropriate use of contrast media and the standardization of kidney function testing in patients undergoing contrast radiography. The target...

Notes

Compliance with ethical standards

Conflict of interest

Honoraria: Yoshitaka Isaka: Otsuka Pharmaceutical Co., Ltd., Daiichi Sankyo Co., Ltd., Kyowa Kirin Co., Ltd., Teijin Pharma Ltd., Chugai Pharmaceutical Co. Ltd., Takeda Pharma Co., Ltd., Boehringer Ingelheim Japan Inc., Mitsubishi Tanabe Pharma Co. Yoshihiko Kanno: Chugai Pharmaceutical Co. Ltd., Kyowa Kirin Co., Ltd. Yasuhiro Komatsu: Baxter Limited. Yoshinari Yasuda: MSD, Astellas, Pfizer, Jansen, Kyowa Kirin Co., Ltd., Mochida, Nipponzouki, Mitsubishi Tanabe Pharma Co. Nobuhiko Joki: Kyowa Kirin Co., Ltd., Chugai Pharmaceutical Co. Ltd. Yoshio Terada: Chugai Pharmaceutical Co. Ltd., Taisho Toyama Pharmaceuticals. Kent Doi: Baxter Limited. Hiroki Hayashi: Otsuka Pharmaceutical Co., LTD. Kazutaka Aonuma: Boehringer Ingelheim Japan Inc. Boehringer Ingelheim GmbH, Medtronic Japan Co., Ltd., Daiichi Sankyo Company, Limited, Abbott Medical Japan Co., Ltd. Yoshihiko Saito: Mitsubishi Tanabe Pharma Co., Otsuka Pharmaceutical Co., Ltd., Novartis Pharma K.K. Atsushi Hirayama: TOA EIYO LTD., Boehringer Ingelheim Japan Inc., Sanofi K.K., Astellas Pharma Inc., Sumitomo Dainippon Pharma Co., Ltd., Bristol-Myers Squibb Company, Amgen Astellas Bio Pharma K.K., AstraZeneca K.K., Daiichi Sankyo Company, Limited, Bayer Yakuhin Ltd. Toyoaki Murohara: MSD, Taisho, Daiichi Sankyo Co., Ltd., Mitsubishi Tanabe Pharma Co., Boehringer Ingelheim Japan Inc., Bayer Yakuhin, Pfizer Japan. Hideki Ishii: Astellas Pharma Inc., Astrazeneca Inc., Bayer Pharma Inc., Bristol-Myers Squibb Inc., Chugai Pharmaceutical Co. Ltd., Daiichi Sankyo Co., Ltd., and Otsuka Pharmaceutical Co., Ltd.

Research funding: Kazuo Awai: Collaborative study: Canon Medical Systems, Hitachi, Fujitsu. Takamichi Murakami: GE Healthcare Japan Corporation, CANON MEDICAL SYSTEMS CORPORATION. Yoshihiko Saito: Novartis Pharma K.K., Amgen Astellas BioPharma K.K., Terumo Corporation. Tadateru Takayama: Daiichi Sankyo Co., Ltd., Mitsubishi Tanabe Pharma Co.

Subsidies or Donations: Yoshinari Yasuda: Dainippon Sumitomo. Hideo Yasuda: Otsuka Pharmaceutical Co., Ltd., Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharma Co., Ltd., Kyowa Kirin Co., Ltd., Sanen Medi Mates Med. Corp., Yujinkai Med. Corp., Seitokukai Med. Corp., Pfizer Inc. Kazuo Awai: Eizai, Daiichi Sankyo Co., Ltd., Fuji Seiyaku Kogyo, Gerbe. Takamichi Murakami: Guerbet Japan, Siemens Healthineers Japan, Daiichi Sankyo Co., Ltd., Eisai Co., Ltd, Fuji Pharma Co., Ltd., TERUMO CORPORATION, FUJIFILM Medical Co., Ltd., FUJIFILM Toyama Chemical Co., Ltd., Nihon Medi-Physics Co., Ltd. Kazutaka Aonuma: Otsuka Pharmaceutical Co., Ltd., ASTEC Co., Ltd., Astellas Pharma Inc., Johnson & Johnson, Takeda Pharmaceutical Company Limited, TEIJIN PHARMA LIMITED, SHIONOGI & CO., LTD., Medical Corporation Tsukuba Kinenkai, Abbott Medical Japan Co., Ltd. Yoshihiko Saito: Astellas Pharma Inc., Otsuka Pharmaceutical Co., Ltd., Takeda Pharmaceutical Co., Ltd., Teijin Pharma Ltd., Bayer Holding Ltd., Daiichi Sankyo Co., Ltd., Mitsubishi Tanabe Pharma Co. Toyoaki Murohara: Daiichi Sankyo Co., Ltd., Mitsubishi Tanabe Pharma Co., Dainipponn Pharmaceuticals, Otsuka Pharmaceutical Co., Ltd., Teijin Pharma Ltd., Astellas.

Endowed departments by commercial entities: Yoshinari Yasuda: MSD, Kyowa Kirin Co., Ltd., Chugai Pharmaceutical Co. Ltd., Kowa, Nippon, Boehringer Ingelheim Japan Inc., Kureha, Sanwa Kagaku Kenkyusyo, Nipro. Seitaro Oda: Philips Japan Ltd. Kazutaka Aonuma: Boston Scientific Corporation, Japan Lifeline Co., Ltd., Nihon Cohden Corporation, BIOTRONIK Japan, Inc., Toray Industries, Inc., Boehringer Ingelheim GmbH, Century Medical Inc. Yoshihiko Saito: MSD. Atsushi Hirayama: Boston Scientific Japan K.K., Otsuka Pharmaceutical Co., Ltd., Fukuda Denshi Co., Ltd., Sr. Jude Medical Japan Co., Ltd., Medtronic Japan Co., Ltd., Japan Lifeline Co., Ltd. Tadateru Takayama: Tsumura. Yoshihide Fujigaki, Masaru Horio, Yugo Ito, Tomonari Ogawa, Eri Koshi, Tomoki Kosugi, Taichi Sato, Tomoyuki Fujiikura, Takamasa Miyauchi, Ryo Miyazawa, Hiromitsu Hayashi, Ryohei Kuwatsuru, Ryusuke Murakami, Yukinobu Yagyu, Hiroshi Toei, Akira Sato and Makoto Watanabe have declared no competing interest.

References

  1. 1.
    KDIGO AKI Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int (Suppl). 2012;17:1–138.Google Scholar
  2. 2.
    Morcos SK, Thomsen HS, Webb JA. Contrast-media-induced nephrotoxicity: a consensus report. Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR). Eur Radiol. 1999;9:1602–13.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Doi K, et al. The Japanese clinical practice guideline for acute kidney injury 2016. Clin Exp Nephrol. 2018;22(5):985–1045.PubMedPubMedCentralGoogle Scholar
  4. 4.
    van der Molen AJ, et al. Post-contrast acute kidney injury—part 1: definition, clinical features, incidence, role of contrast medium and risk factors: recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2018;28(7):2845–55.PubMedPubMedCentralGoogle Scholar
  5. 5.
    van der Molen AJ, et al. Post-contrast acute kidney injury. Part 2: risk stratification, role of hydration and other prophylactic measures, patients taking metformin and chronic dialysis patients: recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2018;28(7):2856-69.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Chong E, Poh KK, Liang S, Tan HC. Risk factors and clinical outcomes for contrast-induced nephropathy after percutaneous coronary intervention in patients with normal serum creatinine. Ann Acad Med Singap. 2010;39:374–80.PubMedPubMedCentralGoogle Scholar
  7. 7.
    La Manna G, Pancaldi LG, Capecchi A, Maska E, Comai G, Cappuccilli ML, Carretta E, Lombardi A, Colì L, Stefoni S. Risk for contrast nephropathy in patients undergoing coronarography. Artif Organs. 2010;34:E193–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gomes AS, Baker JD, Martin-Paredero V, Dixon SM, Takiff H, Machleder HI, Moore WS. Acute renal dysfunction after major arteriography. AJR. 1985;145:1249–53.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Toprak O. Conflicting and new risk factors for contrast induced nephropathy. J Urol. 2007;178:2277–83.PubMedPubMedCentralGoogle Scholar
  10. 10.
    McCullough PA. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2008;51:1419–28.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Nikolsky E, Mehran R, Turcot D, Aymong ED, Mintz GS, Lasic Z, Lansky AJ, Tsounias E, Moses JW, Stone GW, Leon MB, Dangas GD. Impact of chronic kidney disease on prognosis of patients with diabetes mellitus treated with percutaneous coronary intervention. Am J Cardiol. 2004;94:300–5.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Parfrey PS, Griffiths SM, Barrett BJ, Paul MD, Genge M, Withers J, Farid N, McManamon PJ. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med. 1989;320:143–9.PubMedPubMedCentralGoogle Scholar
  13. 13.
    McCullough PA, Bertrand ME, Brinker JA, Stacul F. A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol. 2006;48:692–9.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Moos SI, van Vemde DN, Stoker J, Bipat S. Contrast induced nephropathy in patients undergoing intravenous (IV) contrast enhanced computed tomography (CECT) and the relationship with risk factors: a meta-analysis. Eur J Radiol. 2013;82:e387–99.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kooiman J, Sharif MP, Wendy Z, Yvo WJS, Aart JM, Menno VH, Olaf MD. Meta-analysis: serum creatinine changes following contrast enhanced CT imaging. Eur J Radiol. 2012;81:2554–61.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kiski D, Stepper W, Brand E, Breithardt G, Reinecke H. Impact of renin-angiotensin-aldosterone blockade by angiotensin-converting enzyme inhibitors or AT1-blockers on frequency of contrast medium-induced nephropathy: a post hoc analysis from the Dialysis-versus-Diuresis (DVD) trial. Nephrol Dial Transplant. 2010;25:759–64.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Saudan P, Muller H, Feraille E, Martin PY, Mach F. Renin-angiotensin system blockade and contrast-induced renal toxicity. J Nephrol. 2008;21:681–5.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhou S, Wu C, Song Q, Yang X, Wei Z. Effect of angiotensin-converting enzyme inhibitors in contrast-induced nephropathy: a meta-analysis. Nephron. 2016;133:1–14.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Jo SH, Lee JM, Park J, Kim HS. The impact of renin-angiotensin-aldosterone system blockade on contrast-induced nephropathy: a meta-analysis of 12 studies with 4,493 patients. Cardiology. 2015;130:4–14.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ali-Hassan-Sayegh S, Mirhosseini SJ, Ghodratipour Z, Sarrafan-Chaharsoughi Z, Rahimizadeh E, Karimi-Bondarabadi AA, Haddad F, Shahidzadeh A, Mahdavi P, Dehghan AM, Tahernejad M, Shahidzadeh A, Dehghan H, Ghanei A, Lotfaliani M, Weymann A, Zeriouh M, Popov AF, Sabashnikov A. Strategies preventing contrast-induced nephropathy after coronary angiography: a comprehensive meta-analysis and systematic review of 125 randomized controlled trials. Angiology. 2016;68:389–413.Google Scholar
  21. 21.
    Rosenstock JL, Bruno R, Kim JK, Lubarsky L, Schaller R, Panagopoulos G, DeVita MV, Michelis MF. The effect of withdrawal of ACE inhibitors or angiotensin receptor blockers prior to coronary angiography on the incidence of contrast-induced nephropathy. Int Urol Nephrol. 2008;40:749–55.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Bainey KR, Rahim S, Etherington K, Rokoss ML, Natarajan MK, Velianou JL, Brons S, Mehta SR, CAPTAIN Investigators. Effects of withdrawing vs continuing renin-angiotensin blockers on incidence of acute kidney injury in patients with renal insufficiency undergoing cardiac catheterization: results from the Angiotensin Converting Enzyme Inhibitor/Angiotensin Receptor Blocker and Contrast Induced Nephropathy in Patients Receiving Cardiac Catheterization (CAPTAIN) trial. Am Heart J. 2015;170:110–6.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Wolak T, Aliev E, Rogachev B, Baumfeld Y, Cafri C, Abu-Shakra M, Novack V. Renal safety and angiotensin II blockade medications in patients undergoing non-emergent coronary angiography: a randomized controlled study. Isr Med Assoc J. 2013;15:682–7.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Davenport MS, Khalatbari S, Dillman JR, Cohan RH, Caoili EM, Ellis JH. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material. Radiology. 2013;267:94–105.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Shemirani H, Pourrmoghaddas M. A randomized trial of saline hydration to prevent contrast-induced nephropathy in patients on regular captopril or furosemide therapy undergoing percutaneous coronary intervention. Saudi J Kidney Dis Transpl. 2012;23:280–5.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Solomon R, Wener C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decrease in renal function induced by radiocontrast agents. N Engl J Med. 1994;331:1416–20.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Majumdar SR, Kjellstrand CM, Tymchak WJ, Hervas-Malo M, Taqylor DA, Teo KK. Forced euvolemic diuretic with mannitol and furosecemide for prevention of contrast-induced nephropathy in patients with CKD undergoing coronary angiography: a randomized controlled trial. Am J Kidney Dis. 2009;54:602–9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Neyra JA, Shah S, Mooney R, Jacobsen G, Yee J, Novak JE. Contrast-induced acute kidney injury following coronary angiography: a cohort study of hospitalized patients with or without chronic kidney disease. Nephrol Dial Transplant. 2013;28:1463–71.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Putzu A, Boscolo Berto M, Belletti A, Pasotti E, Cassina T, Moccetti T, Pedrazzini G. Prevention of contrast-induced acute kidney injury by furosemide with matched hydration in patients undergoing interventional procedures: a systematic review and meta-analysis of randomized trials. JACC Cardiovasc Interv. 2017;10:355–63.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Schneider V, Lévesque LE, Zhang B, Hutchinson T, Brophy JM. Association of selective and conventional nonsteroidal antiinflammatory drugs with acute renal failure: a population-based, nested case-control analysis. Am J Epidemiol. 2006;164(9):881–9.PubMedPubMedCentralGoogle Scholar
  31. 31.
    The Society for Cardiovascular Angiography and Interventions (SCAI). Prevention of contrast induced nephropathy: recommendations for the high risk patient undergoing cardiovascular procedures. Catheter Cardiovasc Interv. 2007;69:135–40.Google Scholar
  32. 32.
    Barrett BJ, Parfrey PS. Clinical practice. Preventing nephropathy induced by contrast medium. N Engl J Med. 2006;354:379–86.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Jain V, Sharma D, Prabhakar H, Dash HH. Metformin-associated lactic acidosis following contrast media-induced nephrotoxicity. Eur J Anaesthesiol. 2008;25:166–7.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Safadi R, Dranitzki-Elhalel M, Popovtzer Ben-Yehuda A. Metformin-induced lactic acidosis associated with acute renal failure. Am J Nephrol. 1996;16:520–2.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Stades AM, Heikens JT, Erkelens DW, Holleman F, Hoekstra JB. Metformin and lactic acidosis: cause or coincidence? A review of case reports. J Intern Med. 2004;255:179–87.PubMedPubMedCentralGoogle Scholar
  36. 36.
    McCartney MM, Gilbert FJ, Murchison LE, Pearson D, McHardy K, Murray AD. Metformin and contrast media—a dangerous combination? Clin Radiol. 1999;54:29–33.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Rasuli P, Hammond DI. Metformin and contrast media: where is the conflict? Can Assoc Radiol J. 1998;49:161–6.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Zeller M, Labalette-Bart M, Juliard JM, Potier L, Feldman LJ, Steg PG, Cottin Y, Roussel R. Metformin and contrast-induced acute kidney injury in diabetic patients treated with primary percutaneous coronary intervention for ST segment elevation myocardial infarction: a multicenter study. Int J Cardiol. 2016;220:137–42.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Goergen SK, Rumbold G, Compton G, Harris C. Systematic review of current guidelines, and their evidence base, on risk of lactic acidosis after administration of contrast medium for patients receiving metformin. Radiology. 2010;254:261–9.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Khurana R, Malik IS. Metformin: safety in cardiac patients. Heart. 2010;96:99–102.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Holstein A, Stumvoll M. Contraindications can damage your health is metformin a case in point? Diabetologia. 2005;48:2454–9.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Dangas G, Iakovou I, Nikolsky E, Aymong ED, Mintz GS, Kipshidze NN, Lansky AJ, Moussa I, Stone GW, Moses JW, Leon MB, Mehran R. Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am J Cardiol. 2005;95:13–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Goldenberg I, Chonchol M, Guetta V. Reversible acute kidney injury following contrast exposure and the risk of long-term mortality. Am J Nephrol. 2009;29:136–44.PubMedPubMedCentralGoogle Scholar
  44. 44.
    From AM, Bartholmai BJ, Williams AW, Cha SS, McDonald FS. Mortality associated with nephropathy after radiographic contrast exposure. Mayo Clin Proc. 2008;83:1095–100.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Gruberg L, Mintz GS, Mehran R, Gangas G, Lansky AJ, Kent KM, Pichard AD, Satler LF, Leon MB. The prognostic implications of further renal function deterioration within 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency. J Am Coll Cardiol. 2000;36:1542–8.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Senoo T, Motohiro M, Kamihata H, Yamamoto S, Isono T, Manabe K, Sakuma T, Yoshida S, Sutani Y, Iwasaka T. Contrast-induced nephropathy in patients undergoing emergency percutaneous coronary intervention for acute coronary syndrome. Am J Cardiol. 2010;105:624–8.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Sadeghi HM, Stone GW, Grines CL, Mehran R, Dixon SR, Lansky AJ, Fahy M, Cox DA, Garcia E, Tcheng JE, Griffin JJ, Stuckey TD, Turco M, Carroll JD. Impact of renal insufficiency in patients undergoing primary angioplasty for acute myocardial infarction. Circulation. 2003;108:2769–75.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Marenzi G, Lauri G, Assanelli E, Campodonico J, De Metrio M, Marana I, Grazi M, Veglia F, Bartorelli AL. Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol. 2004;44:1780–5.PubMedPubMedCentralGoogle Scholar
  49. 49.
    McCullough PA, Wolyn R, Rocher LL, Levin RN, O’Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med. 1997;103:368–75.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Marenzi G, Assanelli E, Campodonico J, Lauri G, Marana I, De Metrio M, Moltrasio M, Grazi M, Rubino M, Veglia F, Fabbiocchi F, Bartorelli A. Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann Intern Med. 2009;150:170–7.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Heitmeyer C, Hölscher B, Fobker M, Breithardt G, Hausberg M, Reinecke H. Prognostic value of different laboratory measures of renal function for long-term mortality after contrast media-associated renal impairment. Clin Cardiol. 2010;33:E51–9.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Katzberg RW, Newhouse JH. Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe? Radiology. 2010;256:21–8.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Solomon R. Contrast-induced acute kidney injury: is there a risk after intravenous contrast? Clin J Am Soc Nephrol. 2008;3:1242–3.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Weisbord SD, Mor MK, Resnick AL, Hartwig KC, Palevsky PM, Fine MJ. Incidence and outcomes of contrast-induced AKI following computed tomography. Clin J Am Soc Nephrol. 2008;3:1274–81.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Matsushima K, Peng M, Schaefer EW, Pruitt JH, Kashuk JL, Frankel HL. Posttraumatic contrast-induced acute kidney injury: minimal consequences or significant threat? J Trauma. 2011;70:415–20.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Rashid AH, Brieva JL, Stokes B. Incidence of contrast-induced nephropathy in intensive care patients undergoing computerised tomography and prevalence of risk factors. Anaesth Intensive Care. 2009;37:968–75.PubMedPubMedCentralGoogle Scholar
  57. 57.
    McDonald JS, McDonald RJ, Lieske JC, Carter RE, Katzberg RW, Williamson EE, Kallmes DF. Risk of acute kidney injury, dialysis, and mortality in patients with chronic kidney disease after intravenous contrast material exposure. Mayo Clin Proc. 2015;90:1046–53.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Moranne O, Willoteaux S, Pagniez D, Dequiedt P, Boulanger E. Effect of iodinated contrast agents on residual renal function in PD patients. Nephrol Dial Transplant. 2006;21:1040–5.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Dittrich E, Puttinger H, Schillinger M, Lang I, Stefenelli T, Hörl WH, Vychytil A. Effect of radio contrast media on residual renal function in peritoneal dialysis patients-a prospective study. Nephrol Dial Transplant. 2006;21:1334–9.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, Mintz GS, Lansky AJ, Moses JW, Stone GW, Leon MB, Dangas G. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention. J Am Coll Cardiol. 2004;44:1393–9.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Mehran R, Nikolsky E. Contrast-induced nephropathy: definition, epidemiology, and patients at risk. Kidney Int (Suppl). 2006;100:S11–5.Google Scholar
  62. 62.
    Silver SA, Shah PM, Chertow GM, Harel S, Wald R, Harel Z. Risk prediction models for contrast induced nephropathy: systematic review. BMJ. 2015;351:h4395.Google Scholar
  63. 63.
    Allen DW, Ma B, Leung KC, Graham MM, Pannu N, Traboulsi M, Goodhart D, Knudtson ML, James MT. Risk prediction models for contrast-induced acute kidney injury accompanying cardiac catheterization: systematic review and meta-analysis. Can J Cardiol. 2017;33:724–36.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Brown JR, MacKenzie TA, Maddox TM, Fly J, Tsai TT, Plomondon ME, Nielson CD, Siew ED, Resnic FS, Baker CR, Rumsfeld JS, Matheny ME. Acute kidney injury risk prediction in patients undergoing coronary angiography in a national veterans health administration cohort with external validation. J Am Heart Assoc. 2015;4:e002136.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, Matheny ME, Kosiborod M, Amin AP, Weintraub WS, Curtis JP, Messenger JC, Rumsfeld JS, Spertus JA. Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the National Cardiovascular Data Registry Cath-PCI Registry. J Am Heart Assoc. 2014;3:e001380.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Inohara T, Kohsaka S, Miyata H, Ueda I, Maekawa Y, Fukuda K, Cohen DJ, Kennedy KF, Rumsfeld JS, Spertus JA. Performance and validation of the U. S. NCDR Acute Kidney Injury Prediction Model in Japan. J Am Coll Cardiol. 2016;67:1715–22.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Cheungpasitporn W, Thongprayoon C, Mao MA, Mao SA, D’Costa MR, Kittanamongkolchai W, Kashani KB. Contrast-induced acute kidney injury in kidney transplant recipients: a systematic review and meta-analysis. WJT. 2017;7:81–8.PubMedPubMedCentralGoogle Scholar
  68. 68.
    McDonald JS, Katzberg RW, McDonald RJ, Williamson EE, Kallmes DF. Is the presence of a solitary kidney an independent risk factor for acute kidney injury after contrast-enhanced CT? Radiology. 2016;278:74–81.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxicity in high-risk patients study of iso-osmolar and low-osmolar non-ionic contrast Media Study Investigators. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348:491–9.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Eng J, Wilson RF, Subramaniam RM, Zhang A, Suarez-Cuervo C, Turban S, Choi MJ, Sherrod C, Hutfless S, Iyoha EE, Bass EB. Comparative effect of contrast media type on the incidence of contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164:417–24.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Biondi-Zoccai G, Lotrionte M, Thomsen HS, Romagnoli E, D’Ascenzo F, Giordano A, Frati G. Nephropathy after administration of iso-osmolar and low-osmolar contrast media: evidence from a network meta-analysis. Int J Cardiol. 2014;172:375–80.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Carraro M, Malalan F, Antonione R, Stacul F, Cova M, Petz S, Assante M, Grynne B, Haider T, Palma LD, Faccini L. Effects of a dimeric vs a monomeric nonionic contrast medium on renal function in patients with mild to moderate renal insufficiency: a double-blind, randomized clinical trial. Eur Radiol. 1998;8:144–7.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Chalmers N, Jackson RW. Comparison of iodixanol and iohexol in renal impairment. Br J Radiol. 1999;72:701–3.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Jo SH, Youn TJ, Koo BK, Park JS, Kang HJ, Cho YS, Chung WY, Joo GW, Chae IH, Choi DJ, Oh BH, Lee MM, Park YB, Kim HS. Renal toxicity evaluation and comparison between visipaque (iodixanol) and hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomized controlled trial. J Am Coll Cardiol. 2006;48:924–30.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Feldkamp T, Baumgart D, Elsner M, Herget-Rosenthal S, Pietruck F, Erbel R, Philipp T, Kribben A. Nephrotoxicity of iso-osmolar versus low-osmolar contrast media is equal in low risk patients. Clin Nephrol. 2006;66:322–30.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Barrett BJ, Katzberg RW, Thomsen HS, Chen N, Sahani D, Soulez G, Heiken JP, Lepanto L, Ni ZH, Ni ZH, Nelson R. Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double-blind comparison of iodixanol and iopamidol. Invest Radiol. 2006;41:815–21.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Solomon RJ, Natarajan MK, Doucet S, Sharma SK, Staniloae CS, Katholi RE, Gelormini JL, Labinaz M, Moreyra AE. Cardiac angiography in renally impaired patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation. 2007;115:3189–96.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Rudnick MR, Davidson C, Laskey W, Stafford JL, Sherwin PF. Nephrotoxicity of iodixanol versus ioversol in patients with chronic kidney disease: the Visipaque Angiography, Interventions with Laboratory Outcomes in Renal Insufficiency (VALOR) Trial. Am Heart J. 2008;156:776–82.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Thomsen HS, Morcos SK, Erley CM, Grazioli L, Bonomo L, Ni Z, Romano L. The ACTIVE Trial: comparison of the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Invest Radiol. 2008;43:170–8.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Nie B, Cheng WJ, Li YF, Cao Z, Yang Q, Zhao YX, Guo YH, Zhou YJ. A prospective, double-blind, randomized, controlled trial on the efficacy and cardiorenal safety of iodixanol vs. iopromide in patients with chronic kidney disease undergoing coronary angiography with or without percutaneous coronary intervention. Catheter Cardiovasc Interv. 2008;72:958–65.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Nguyen SA, Suranyi P, Ravenel JG, Randall PK, Romano PB, Strom KA, Costello P, Schoepf UJ. Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology. 2008;248:97–105.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Kuhn MJ, Chen N, Sahani DV, Reimer D, van Beek EJ, Heiken JP, So GJ. The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low- or isoosmolar contrast agent exposure. AJR. 2008;191:151–7.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Hardiek KJ, Katholi RE, Robbs RS, Katholi CE. Renal effects of contrast media in diabetic patients undergoing diagnostic or interventional coronary angiography. J Diabetes Complicat. 2008;22:171–7.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Wessely R, Koppara T, Bradaric C, Vorpahl M, Braun S, Schulz S, Mehilli J, Schömig A, Kastrati A, Contrast Media and Nephrotoxicity Following Coronary Revascularization by Angioplasty Trial Investigators. Choice of contrast medium in patients with impaired renal function undergoing percutaneous coronary intervention. Circ Cardiovasc Interv. 2009;2:430–7.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Mehran R, Nikolsky E, Kirtane AJ, Caixeta A, Wong SC, Teirstein PS, Downey WE, Batchelor WB, Casterella PJ, Kim YH, Fahy M, Dangas GD. Ionic low-osmolar versus nonionic iso-osmolar contrast media to obviate worsening nephropathy after angioplasty in chronic renal failure patients: the ICON (Ionic versus non-ionic Contrast to Obviate worsening Nephropathy after angioplasty in chronic renal failure patients) study. JACC Cardiovasc Interv. 2009;2:415–21.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Laskey W, Aspelin P, Davidson C, Rudnick M, Aubry P, Kumar S, Gietzen F, Wiemer M. Nephrotoxicity of iodixanol versus iopamidol in patients with chronic kidney disease and diabetes mellitus undergoing coronary angiographic procedures. Am Heart J. 2009;158:822–8.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Juergens CP, Winter JP, Nguyen-Do P, Lo S, French JK, Hallani H, Fernandes C, Jepson N, Leung DY. Nephrotoxic effects of iodixanol and iopromide in patients with abnormal renal function receiving N-acetylcysteine and hydration before coronary angiography and intervention: a randomized trial. Intern Med J. 2009;39:25–31.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Hernández F, Mora L, García-Tejada J, Velázquez M, Gómez-Blázquez I, Bastante T, Albarrán A, Andreu J, Tascón J. Comparison of iodixanol and ioversol for the prevention of contrast-induced nephropathy in diabetic patients after coronary angiography or angioplasty. Rev Esp Cardiol. 2009;62:1373–80.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Chuang FR, Chen TC, Wang IK, Chuang CH, Chang HW, Ting-Yu Chiou T, Cheng YF, Lee WC, Chen WC, Yang KD, Lee CH. Comparison of iodixanol and iohexol in patients undergoing intravenous pyelography: a prospective controlled study. Ren Fail. 2009;31:181–8.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Zo’o M, Hoermann M, Balassy C, Brunelle F, Azoulay R, Pariente D, Panuel M, Le Dosseur P. Renal safety in pediatric imaging: randomized, double-blind phase IV clinical trial of iobitridol 300 versus iodixanol 270 in multidetector CT. Pediatr Radiol. 2011;41:1393–400.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Serafin Z, Karolkiewicz M, Gruszka M, Strózecki P, Lasek W, Odrowaz-Sypniewska G, Manitius J, Beuth W. High incidence of nephropathy in neurosurgical patients after intra-arterial administration of low-osmolar and iso-osmolar contrast media. Acta Radiol. 2011;52:422–9.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Shin DH, Choi DJ, Youn TJ, Yoon CH, Suh JW, Kim KI, Cho YS, Cho GY, Chae IH, Kim CH. Comparison of contras-induced nephrotoxicity of iodixanol and iopromide in patients with renal insufficiency undergoing coronary angiography. Am J Cardiol. 2011;108:189–94.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Bolognese L, Falsini G, Schwenke C, Grotti S, Limbruno U, Liistro F, Carrera A, Angioli P, Picchi A, Ducci K, Pierli C. Impact of iso-osmolar versus low-osmolar contrast agents on contrast-induced nephropathy and tissue reperfusion in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (from the Contrast Media and Nephrotoxicity Following Primary Angioplasty for Acute Myocardial Infarction [CONTRAST-AMI] Trial). Am J Cardiol. 2012;109:67–74.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Chen Y, Hu S, Liu Y, Zhao R, Wang L, Fu G, He Q, Su X, Zheng Y, Qi X, Liu H, Wang J, Gao W, Wang M, Liu S, Zheng X, He B, Yang P, Zhou S, Gao C, Qiu C. Renal tolerability of iopromide and iodixanol in 562 renally impaired patients undergoing cardiac catheterisation: the DIRECT study. EuroIntervention. 2012;8:830–8.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Terrenato I, Sperati F, Musicco F, Pozzi AF, di Turi A, Caterino M, de Lutio di Castelguidone E, Setola SV, Bellomi M, Neumaier CE, Conti L, Cigliana G, Merola R, Antenucci A, Orlandi G, Giordano A, Barba M, Canitano S. Iodixanol vs iopromide in cancer patients: evidence from a randomized clinical trial. J Cell Physiol. 2018;233:2572–80.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Labountry TM, Shah M, Raman SV, Lin FY, Berman DS, Min JK. Within hospital and 30-day outcomes in 107,994 patients undergoing invasive coronary angiography with different low-osmolar iodinated contrast media. Am J Cardiol. 2012;109:1594–9.Google Scholar
  97. 97.
    Dillman JR, al-Hawary M, Ellis JH, Cohan RH, Kaza R, Myles JD, Khalatbari S, Francis IR. Comparative investigation of iv iohexol and iopamidol: effect on renal function in low-risk outpatients undergoing CT. AJR. 2012;198:392–7.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Chou SH, Wang ZJ, Kuo J, Cabarrus M, Fu Y, Aslam R, Yee J, Zimmet JM, Shunk K, Elicker B, Yeh BM. Persistent renal enhancement after intra-arterial versus intravenous iodixanol administration. Eur J Radiol. 2011;80:378–86.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Lufft V, Hoogestraat-Lufft L, Fels LM, Egbeyong-Baiyee D, Tusch G, Galanski M, Olbricht CJ. Contrast media nephropathy: intravenous CT angiography versus intraarterial digital subtraction angiography in renal artery stenosis: a prospective randomized trial. Am J Kidney Dis. 2002;40:236–42.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Karlsberg RP, Dohad SY, Sheng R. Contrast medium-induced acute kidney injury: comparison of intravenous and intraarterial administration of iodinated contrast medium. J Vasc Interv Radiol. 2011;22:1159–65.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Kooiman J, Le Haen PA, Gezgin G, de Vries JP, Boersma D, Brulez HF, Sijpkens YW, van der Molen AJ, Cannegieter SC, Hamming JF, Huisman MV. Contrast-induced acute kidney injury and clinical outcomes after intra-arterial and intravenous contrast administration: risk comparison adjusted for patient characteristics by design. Am Heart J. 2013;165(5):793–9.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Tong GE, Kumar S, Chong KC, Shah N, Wong MJ, Zimmet JM, Wang ZJ, Yee J, Fu Y, Yeh BM. Risk of contrast-induced nephropathy for patients receiving intravenous vs. intra-arterial iodixanol administration. Abdom Radiol (NY). 2016;41(1):91–9.PubMedPubMedCentralGoogle Scholar
  103. 103.
    McDonald JS, Leake CB, McDonald RJ, Gulati R, Katzberg RW, Williamson EE, Kallmes DF. Acute kidney injury after intravenous versus intra-arterial contrast material administration in a paired cohort. Invest Radiol. 2016;51(12):804–9.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Rihal CS, Textor SC, Grill DE, Berger PB, Ting HH, Best PJ, Singh M, Bell MR, Barsness GW, Mathew V, Garratt KN, Holmes DR Jr. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105:2259–64.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Abe M, Kimura T, Morimoto T, Furukawa Y, Kita T. Incidence of and risk factors for contrast-induced nephropathy after cardiac catheterization in Japanese patients. Circ J. 2009;73:1518–22.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Saito Y, Watanabe M, Aonuma K, Hirayama A, Tamaki N, Tsutsui H, Murohara T, Ogawa H, Akasaka T, Yoshimura M, Sato A, Takayama T, Sakakibara M, Suzuki S, Ishigami K, Onoue K, CINC-J study investigators. Proteinuria and reduced estimated glomerular filtration rate are independent risk factors for contrast-induced nephropathy after cardiac catheterization. Circ J. 2015;79:1624–30.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Brown JR, Robb JF, Block CA, Schoolwerth AC, Kaplan AV, O’Connor GT, Solomon RJ, Malenka DJ. Does safe dosing of iodinated contrast prevent contrast-induced acute kidney injury? Circ Cardiovasc Interv. 2010;3:346–50.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Nyman U, Bjork J, Aspelin P, Marenzi G. Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol. 2008;49:658–67.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Laskey WK, Jenkins C, Selzer F, Marroquin OC, Wilensky RL, Glaser R, Cohen HA, Holmes DR Jr, NHLBI Dynamic Registry Investigators. Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J Am Coll Cardiol. 2007;50:584–90.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Gurm HS, Dixon SR, Smith DE, Share D, Lalonde T, Greenbaum A, Moscucci M, BMC2 (Blue Cross Blue Shield of Michigan Cardiovascular Consortium). Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2011;58:907–14.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Gurm HS, Seth M, Kooiman J, Share D. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol. 2013;61:2242–8.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, Matheny ME, Kosiborod M, Amin AP, Messenger JC, Rumsfeld JS, Spertus JA. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. JACC Cardiovasc Interv. 2014;7:1–9.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Abe M, Morimoto T, Akao M, Furukawa Y, Nakagawa Y, Shizuta S, Ehara N, Taniguchi R, Doi T, Nishiyama K, Ozasa N, Saito N, Hoshino K, Mitsuoka H, Toma M, Tamura T, Haruna Y, Kita T, Kimura T. Relation of contrast-induced nephropathy to long-term mortality after percutaneous coronary intervention. Am J Cardiol. 2014;114:362–8.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Silver SA. Risk prediction models for contrast induced nephropathy: systematic review. BMJ. 2015;27(351):h4395.  https://doi.org/10.1136/bmj.h4395(Review. Erratum. In: BMJ. 2015;351: h5401. PubMed PMID: 26316642;PubMed Central PMCID: PMC4784870).CrossRefGoogle Scholar
  115. 115.
    Chong E, Poh KK, Liang S, Soon CY, Tan HC. Comparison of risks and clinical predictors of contrast-induced nephropathy in patients undergoing emergency versus nonemergency percutaneous coronary interventions. J Interv Cardiol. 2010;23:451–9.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Abe D, Sato A, Hoshi T, Kakefuda Y, Watabe H, Ojima E, Hiraya D, Harunari T, Takeyasu N, Aonuma K. Clinical predictors of contrast-induced acute kidney injury in patients undergoing emergent versus elective percutaneous coronary intervention. Circ J. 2014;78:85–91.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Giacoppo D, Madhavan MV, Baber U, Warren J, Bansilal S, Witzenbichler B, Dangas GD, Kirtane AJ, Xu K, Kornowski R, Brener SJ, Généreux P, Stone GW, Mehran R. Impact of Contrast-Induced Acute Kidney Injury After Percutaneous Coronary Intervention on Short- and Long-Term Outcomes: Pooled Analysis From the HORIZONS-AMI and ACUITY Trials. Circ Cardiovasc Interv. 2015;8(8):e002475.PubMedPubMedCentralGoogle Scholar
  118. 118.
    McCullough PA, Choi JP, Feghali GA, Schussler JM, Stoler RM, Vallabahn RC, Mehta A. Contrast-Induced Acute Kidney Injury. J Am Coll Cardiol. 2016;68:1465–73.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Funabiki K, Masuoka H, Shimizu H, Emi Y, Mori T, Ito M, Nakano T. Cholesterol crystal embolization (CCE) after cardiac catheterization: a case report and a review of 36 cases in the Japanese literature. Jpn Heart J. 2003;44:767–74.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Fukumoto Y, Tsutsui H, Tsuchihashi M, Masumoto A, Takeshita A. Cholesterol Embolism Study (CHEST) Investigators: The incidence and risk factors of cholesterol embolization syndrome, a complication of cardiac catheterization: a prospective study. J Am Coll Cardiol. 2003;42:211–6.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Scolari F, Ravani P. Atheroembolic renal disease. Lancet. 2010;375:1650–60.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Vuurmans T, Byrne J, Fretz E, Janssen C, Hilton JD, Klinke WP, Djurdjev O, Levin A. Chronic kidney injury in patients after cardiac catheterisation or percutaneous coronary intervention: a comparison of radial and femoral approaches (from the British Columbia Cardiac and Renal Registries). Heart. 2010;96:1538–42.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Kooiman J, Seth M, Dixon S, Wohns D, LaLonde T, Rao SV, Gurm HS. Risk of acute kidney injury after percutaneous coronary interventions using radial versus femoral vascular access: insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium. Circ Cardiovasc Interv. 2014;7:190–8.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Andò G, Cortese B, Russo F, Rothenbühler M, Frigoli E, Gargiulo G, Briguori C, Vranckx P, Leonardi S, Guiducci V, Belloni F, Ferrari F, de la Torre Hernandez JM, Curello S, Liistro F, Perkan A, De Servi S, Casu G, Dellavalle A, Fischetti D, Micari A, Loi B, Mangiacapra F, Russo N, Tarantino F, Saia F, Heg D, Windecker S, Jüni P, Valgimigli M, MATRIX Investigators. Acute kidney injury after radial or femoral access for invasive acute coronary syndrome management: AKI-MATRIX. J Am Coll Cardiol. 2017;69(21):2592–630.Google Scholar
  125. 125.
    James MT, Samuel SM, Manning MA, Tonelli M, Ghali WA, Faris P, Knudtson ML, Pannu N, Hemmelgarn BR. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: a systematic review and meta-analysis. Circ Cardiovasc Interv. 2013;6:37–43.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Valle JA, McCoy LA, Maddox TM, Rumsfeld JS, Ho PM, Casserly IP, Nallamothu BK, Roe MT, Tsai TT, Messenger JC. Longitudinal risk of adverse events in patients with acute kidney injury after percutaneous coronary intervention: insights from the National Cardiovascular Data Registry. Circ Cardiovasc Interv. 2017;10 :e004439.Google Scholar
  127. 127.
    Maioli M, Toso A, Leoncini M, Gallopin M, Musilli N, Bellandi F. Persistent renal damage after contrast-induced acute kidney injury: incidence, evolution, risk factors, and prognosis. Circulation. 2012;125:3099–107.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Sato A, Aonuma K, Watanabe M, Hirayama A, Tamaki N, Tsutsui H, Toyoaki M, Ogawa H, Akasaka T, Yoshimura M, Takayama T, Sakakibara M, Suzuki S, Ishigami K, Onoue K, Saito Y, CINC-J study investigators. Association of contrast-induced nephropathy with risk of adverse clinical outcomes in patients with cardiac catheterization: from the CINC-J study. Int J Cardiol. 2017;227:424–9.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Kim JH, Yang JH, Choi SH, Song YB, Hahn JY, Choi JH, Lee SH, Gwon HC. Predictors of outcomes of contrast-induced acute kidney injury after percutaneous coronary intervention in patients with chronic kidney disease. Am J Cardiol. 2014;114:1830–5.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Watabe H, Sato A, Hoshi T, Takeyasu N, Abe D, Akiyama D, Kakefuda Y, Nishina H, Noguchi Y, Aonuma K. Association of contrast-induced acute kidney injury with long-term cardiovascular events in acute coronary syndrome patients with chronic kidney disease undergoing emergent percutaneous coronary intervention. Int J Cardiol. 2014;174:57–63.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Gargiulo G, Capodanno D, Sannino A, Perrino C, Capranzano P, Stabile E, Trimarco B, Tamburino C, Esposito G. Moderate and severe preoperative chronic kidney disease worsen clinical outcomes after transcatheter aortic valve implantation: meta-analysis of 4992 patients. Circ Cardiovasc Interv. 2015;8:e002220.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Chen C, Zhao ZG, Liao YB, Peng Y, Meng QT, Chai H, Li Q, Luo XL, Liu W, Zhang C, Chen M, Huang DJ. Impact of renal dysfunction on mid-term outcome after transcatheter aortic valve implantation: a systematic review and meta-analysis. PLoS One. 2015;10:e0119817.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Barbanti M, Gargiulo G, Tamburino C. Renal dysfunction and transcatheter aortic valve implantation outcomes. Expert Rev Cardiovasc Ther. 2016;14:1315–23.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Allende R, Webb JG, Munoz-Garcia AJ, de Jaegere P, Tamburino C, Dager AE, Cheema A, Serra V, Amat-Santos I, Velianou JL, Barbanti M, Dvir D, Alonso-Briales JH, Nuis RJ, Faqiri E, Imme S, Benitez LM, Cucalon AM, Al Lawati H, Garcia Del Blanco B, Lopez J, Natarajan MK, Delarochelliere R, Urena M, Ribeiro HB, Dumont E, Nombela-Franco L, Rodes-Cabau J. Advanced chronic kidney disease in patients undergoing transcatheter aortic valve implantation: Insights on clinical outcomes and prognostic markers from a large cohort of patients. Eur Heart J. 2014;35:2685–96.PubMedPubMedCentralGoogle Scholar
  135. 135.
    D’Ascenzo F, Moretti C, Salizzoni S, Bollati M, D’Amico M, Ballocca F, Giordana F, Barbanti M, Ussia GP, Brambilla N, Bedogni F, Biondi Zoccai G, Tamburino C, Gaita F, Sheiban I. 30 days and midterm outcomes of patients undergoing percutaneous replacement of aortic valve according to their renal function: a multicenter study. Int J Cardiol. 2013;167:1514–8.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Dumonteil N, van der Boon RM, Tchetche D, Chieffo A, Van Mieghem NM, Marcheix B, Buchanan GL, Vahdat O, Serruys PW, Fajadet J, Colombo A, de Jaegere PP, Carrie D. Impact of preoperative chronic kidney disease on short- and long-term outcomes after transcatheter aortic valve implantation: a pooled-Rotterdam-Milano-Toulouse in collaboration plus (pragmatic-plus) initiative substudy. Am Heart J. 2013;165:752–60.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Goebel N, Baumbach H, Ahad S, Voehringer M, Hill S, Albert M, Franke UF. Transcatheter aortic valve replacement: does kidney function affect outcome? Ann Thorac Surg. 2013;96:507–12.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Nuis RJ, Van Mieghem NM, Tzikas A, Piazza N, Otten AM, Cheng J, van Domburg RT, Betjes M, Serruys PW, de Jaegere PP. Frequency, determinants, and prognostic effects of acute kidney injury and red blood cell transfusion in patients undergoing transcatheter aortic valve implantation. Catheter Cardiovasc Interv. 2011;77:881–9.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Wessely M, Rau S, Lange P, Kehl K, Renz V, Schonermarck U, Steinbeck G, Fischereder M, Boekstegers P. Chronic kidney disease is not associated with a higher risk for mortality or acute kidney injury in transcatheter aortic valve implantation. Nephrol Dial Transplant. 2012;27:3502–8.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Yamamoto M, Hayashida K, Mouillet G, Hovasse T, Chevalier B, Oguri A, Watanabe Y, Dubois-Rande JL, Morice MC, Lefevre T, Teiger E. Prognostic value of chronic kidney disease after transcatheter aortic valve implantation. J Am Coll Cardiol. 2013;62:869–77.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Oguri A, Yamamoto M, Mouillet G, Gilard M, Laskar M, Eltchaninoff H, Fajadet J, Iung B, Donzeau-Gouge P, Leprince P, Leguerrier A, Prat A, Lievre M, Chevreul K, Dubois-Rande JL, Teiger E, FRANCE 2 Registry investigators. Impact of chronic kidney disease on the outcomes of transcatheter aortic valve implantation: results from the FRANCE 2 registry. EuroIntervention. 2015;10:e1–9.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Barbanti M, Latib A, Sgroi C, Fiorina C, De Carlo M, Bedogni F, De Marco F, Ettori F, Petronio AS, Colombo A, Testa L, Klugmann S, Poli A, Maffeo D, Maisano F, Aruta P, Gulino S, Giarratana A, Patanè M, Cannata S, Immè S, Mangoni L, Rossi A, Tamburino C. Acute kidney injury after transcatheter aortic valve implantation with self-expanding CoreValve prosthesis: results from a large multicentre Italian research project. EuroIntervention. 2014;10:133–40.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Aalaei-Andabili SH, Pourafshar N, Bavry AA, Klodell CT, Anderson RD, Karimi A, Petersen JW, Beaver TM. Acute kidney injury after transcatheter aortic valve replacement. J Card Surg. 2016;31:416–22.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Bagur R, Webb JG, Nietlispach F, Dumont E, De Larochellière R, Doyle D, Masson JB, Gutiérrez MJ, Clavel MA, Bertrand OF, Pibarot P, Rodés-Cabau J. Acute kidney injury following transcatheter aortic valve implantation: predictive factors, prognostic value, and comparison with surgical aortic valve replacement. Eur Heart J. 2010;31:865–74.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Newhouse JH, Kho D, Rao QA, Starren J. Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol. 2008;191:376–82.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Murakami R, Hayashi H, Sugizaki K, Yoshida T, Okazaki E, Kumita S, Owan C. Contrast-induced nephropathy in patients with renal insufficiency undergoing contrast-enhanced MDCT. Eur Radiol. 2012;22:2147–52.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Davenport MS, Khalatbari S, Cohan RH, Dillman JR, Myles JD, Ellis JH. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology. 2013;268:719–28.PubMedPubMedCentralGoogle Scholar
  148. 148.
    McDonald JS, McDonald RJ, Comin J, Williamson EE, Katzberg RW, Murad MH, Kallmes DF. Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiology. 2013;267:119–28.PubMedPubMedCentralGoogle Scholar
  149. 149.
    McDonald RJ, McDonald JS, Bida JP, Carter RE, Fleming CJ, Misra S, Williamson EE, Kallmes DF. Intravenous contrast material-induced nephropathy: causal or coincident phenomenon? Radiology. 2013;267:106–18.PubMedPubMedCentralGoogle Scholar
  150. 150.
    McDonald JS, McDonald RJ, Carter RE, Katzberg RW, Kallmes DF, Williamson EE. Risk of intravenous contrast material-mediated acute kidney injury: a propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology. 2014;271:65–73.PubMedPubMedCentralGoogle Scholar
  151. 151.
    McDonald RJ, McDonald JS, Carter RE, Hartman RP, Katzberg RW, Kallmes DF, Williamson EE. Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology. 2014;273:714–25.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Hsieh MS, Chiu CS, How CK, Chiang JH, Sheu ML, Chen WC, Lin HJ, Hsieh VC, Hu SY. Contrast medium exposure during computed tomography and risk of development of end-stage renal disease in patients with chronic kidney disease: a nationwide population-based, propensity score-matched, longitudinal follow-up study. Medicine (Baltimore). 2016;95:e3388.Google Scholar
  153. 153.
    Brinjikji W, Demchuk AM, Murad MH, Rabinstein AA, McDonald RJ, McDonald JS, Kallmes DF. neurons over nephrons: systematic review and meta-analysis of contrast-induced nephropathy in patients with acute stroke. Stroke. 2017;48:1862–8.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Hinson JS, Ehmann MR, Fine DM, Fishman EK, Toerper MF, Rothman RE, Klein EY. Risk of acute kidney injury after intravenous contrast media administration. Ann Emerg Med. 2017;69(577–586):e4.Google Scholar
  155. 155.
    McDonald JS, McDonald RJ, Williamson EE, Kallmes DF. is intravenous administration of iodixanol associated with increased risk of acute kidney injury, dialysis, or mortality? A propensity score-adjusted study. Radiology. 2017;285:414–24.PubMedPubMedCentralGoogle Scholar
  156. 156.
    McDonald JS, McDonald RJ, Williamson EE, Kallmes DF, Kashani K. Post-contrast acute kidney injury in intensive care unit patients: a propensity score-adjusted study. Intensive Care Med. 2017;43:774–84.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Tao SM, Kong X, Schoepf UJ, Wichmann JL, Shuler DC, Zhou CS, Lu GM, Zhang LJ. Acute kidney injury in patients with nephrotic syndrome undergoing contrast-enhanced CT for suspected venous thromboembolism: a propensity score-matched retrospective cohort study. Eur Radiol. 2018;28:1585–93.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Aycock RD, Westafer LM, Boxen JL, Majlesi N, Schoenfeld EM, Bannuru RR. Acute kidney injury after computed tomography: a meta-analysis. Ann Emerg Med. 2018;71(44–53):e4.Google Scholar
  159. 159.
    Davenport MS, Cohan RH, Khalatbari S, Ellis JH. The challenges in assessing contrast-induced nephropathy: where are we now? AJR Am J Roentgenol. 2014;202:784–9.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Newhouse JH, RoyChoudhury A. Quantitating contrast medium-induced nephropathy: controlling the controls. Radiology. 2013;267:4–8.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Case J, Khan S, Khalid R, Khan A. Epidemiology of acute kidney injury in the intensive care unit. Crit Care Res Pract. 2013;2013:479730.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Koeze J, Keus F, Dieperink W, van der Horst IC, Zijlstra JG, van Meurs M. Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol. 2017;18:70.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Bellomo R, Ronco C, Mehta RL, Asfar P, Boisrame-Helms J, Darmon M, Diehl JL, Duranteau J, Hoste EAJ, Olivier JB, Legrand M, Lerolle N, Malbrain MLNG, Mårtensson J, Oudemans-van Straaten HM, Parienti JJ, Payen D, Perinel S, Peters E, Pickkers P, Rondeau E, Schetz M, Vinsonneau C, Wendon J, Zhang L, Laterre PF. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference. Ann Intensive Care. 2017;7:49.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Cely CM, Schein RM, Quartin AA. Risk of contrast induced nephropathy in the critically ill: a prospective, case matched study. Crit Care. 2012;16:R67.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Sinert R, Brandler E, Subramanian RA, Miller AC. Does the current definition of contrast-induced acute kidney injury reflect a true clinical entity? Acad Emerg Med. 2012;19:1261–7.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Huang MK, Hsu TF, Chiu YH, Chiang SC, Kao WF, Yen DH, Huang MS. Risk factors for acute kidney injury in the elderly undergoing contrast-enhanced computed tomography in the emergency department. J Chin Med Assoc. 2013;76:271–6.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Sonhaye L, Kolou B, Tchaou M, Amadou A, Assih K, N’Timon B, Adambounou K, Agota-Koussema L, Adjenou K, N’Dakena K. Intravenous contrast medium administration for computed tomography scan in emergency: a possible cause of contrast-induced nephropathy. Radiol Res Pract. 2015;2015:805786.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Ehrlich ME, Turner HL, Currie LJ, Wintermark M, Worrall BB, Southerland AM. Safety of computed tomographic angiography in the evaluation of patients with acute stroke: a single-center experience. Stroke. 2016;47:2045–50.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Heller M, Krieger P, Finefrock D, Nguyen T, Akhtar S. Contrast CT scans in the emergency department do not increase risk of adverse renal outcomes. West J Emerg Med. 2016;17:404–8.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Demel SL, Grossman AW, Khoury JC, Moomaw CJ, Alwell K, Kissela BM, Woo D, Flaherty ML, Ferioli S, Mackey J, De Los Rios la Rosa F, Martini S, Adeoye O, Kleindorfer DO. Association between acute kidney disease and intravenous dye administration in patients with acute stroke: a population-based study. Stroke. 2017;48:835–9.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Fukushima Y, Miyazawa H, Nakamura J, Taketomi-Takahashi A, Suto T, Tsushima Y. Contrast-induced nephropathy (CIN) of patients with renal dysfunction in CT examination. Jpn J Radiol. 2017;35:427–31.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Jochheim D, Schneider VS, Schwarz F, Kupatt C, Lange P, Reiser M, Massberg S, Gutiérrez-Chico JL, Mehilli J, Becker HC. Contrast-induced acute kidney injury after computed tomography prior to transcatheter aortic valve implantation. Clin Radiol. 2014;69:1034–8.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Abbara S, Blanke P, Maroules CD, Cheezum M, Choi AD, Han BK, Marwan M, Naoum C, Norgaard BL, Rubinshtein R, Schoenhagen P, Villines T, Leipsic J. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the society of Cardiovascular Computed Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr. 2016;10:435–49.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Nyman U, Almen T, Aspelin P, Hellstrom M, Kristiansson M, Sterner G. Contrast-medium-Induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol. 2005;46:830–42.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Seyal AR, Arslanoglu A, Abboud SF, Sahin A, Horowitz JM, Yaghmai V. CT of the abdomen with reduced tube voltage in adults: a practical approach. Radiographics. 2015;35:1922–39.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Nakaura T, Awai K, Maruyama N, Takata N, Yoshinaka I, Harada K, Uemura S, Yamashita Y. Abdominal dynamic CT in patients with renal dysfunction: contrast agent dose reduction with low tube voltage and high tube current-time product settings at 256-detector row CT. Radiology. 2011;261:467–76.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Geyer LL, Schoepf UJ, Meinel FG, Nance JW Jr, Bastarrika G, Leipsic JA, Paul NS, Rengo M, Laghi A, De Cecco CN. State of the art: iterative CT reconstruction techniques. Radiology. 2015;276:339–57.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Nakaura T, Nakamura S, Maruyama N, Funama Y, Awai K, Harada K, Uemura S, Yamashita Y. Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology. 2012;264:445–54.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Oda S, Utsunomiya D, Funama Y, Shimonobo T, Namimoto T, Itatani R, Hirai T, Yamashita Y. Evaluation of deep vein thrombosis with reduced radiation and contrast material dose at computed tomography venography. Circ J. 2012;76:2614–22.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Chen CM, Chu SY, Hsu MY, Liao YL, Tsai HY. Low-tube-voltage (80 kVp) CT aortography using 320-row volume CT with adaptive iterative reconstruction: lower contrast medium and radiation dose. Eur Radiol. 2014;24:460–8.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Zheng M, Liu Y, Wei M, Wu Y, Zhao H, Li J. Low concentration contrast medium for dual-source computed tomography coronary angiography by a combination of iterative reconstruction and low-tube-voltage technique: feasibility study. Eur J Radiol. 2014;83:e92–9.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Oda S, Utsunomiya D, Yuki H, Kai N, Hatemura M, Funama Y, Kidoh M, Yoshida M, Namimoto T, Yamashita Y. Low contrast and radiation dose coronary CT angiography using a 320-row system and a refined contrast injection and timing method. J Cardiovasc Comput Tomogr. 2015;9:19–27.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Yin WH, Lu B, Gao JB, Li PL, Sun K, Wu ZF, Yang WJ, Zhang XQ, Zheng MW, McQuiston AD, Meinel FG, Schoepf UJ. Effect of reduced x-ray tube voltage, low iodine concentration contrast medium, and sonogram-affirmed iterative reconstruction on image quality and radiation dose at coronary CT angiography: results of the prospective multicenter REALISE trial. J Cardiovasc Comput Tomogr. 2015;9:215–24.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Iyama Y, Nakaura T, Yokoyama K, Kidoh M, Harada K, Tokuyasu S, Yamashita Y. Impact of knowledge-based iterative model reconstruction in abdominal dynamic CT with low tube voltage and low contrast dose. AJR Am J Roentgenol. 2016;206:687–93.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Mangold S, Wichmann JL, Schoepf UJ, Poole ZB, Canstein C, Varga-Szemes A, Caruso D, Bamberg F, Nikolaou K, De Cecco CN. Automated tube voltage selection for radiation dose and contrast medium reduction at coronary CT angiography using 3rd generation dual-source CT. Eur Radiol. 2016;26:3608–16.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Felmly LM, De Cecco CN, Schoepf UJ, Varga-Szemes A, Mangold S, McQuiston AD, Litwin SE, Bayer RR, Vogl TJ, Wichmann JL. Low contrast medium-volume third-generation dual-source computed tomography angiography for transcatheter aortic valve replacement planning. Eur Radiol. 2017;27:1944–53.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Taguchi N, Oda S, Utsunomiya D, Funama Y, Nakaura T, Imuta M, Yamamura S, Yuki H, Kidoh M, Hirata K, Namimoto T, Hatemura M, Kai N, Yamashita Y. Using 80 kVp on a 320-row scanner for hepatic multiphasic CT reduces the contrast dose by 50% in patients at risk for contrast-induced nephropathy. Eur Radiol. 2017;27:812–20.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Willemink MJ, de Jong PA, Leiner T, de Heer LM, Nievelstein RA, Budde RP, Schiham AM. Iterative reconstruction techniques for computed tomography. Part 1: technical principles. Eur Radiol. 2013;23:1623–31.PubMedPubMedCentralGoogle Scholar
  189. 189.
    Yuan R, Shuman WP, Earls JP, Hague CJ, Mumtaz HA, Scott-Moncrieff A, Ellis JD, Mayo JR, Leipsic JA. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography-a prospective randomized trial. Radiology. 2012;262:290–7.PubMedPubMedCentralGoogle Scholar
  190. 190.
    Carrascosa P, Leipsic JA, Capunay C, Deviggiano A, Vallejos J, Goldsmit A, Rodriguez-Granillo GA. Monochromatic image reconstruction by dual energy imaging allows half iodine load computed tomography coronary angiography. Eur J Radiol. 2015;84:1915–20.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Tsang DS, Merchant TE, Merchant SE, Smith H, Yagil Y, Hua CH. Quantifying potential reduction in contrast dose with monoenergetic images synthesized from dual-layer detector spectral CT. Br J Radiol. 2017;90:20170290.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Shuman WP, Chan KT, Busey JM, Mitsumori LM, Koprowicz KM. Dual-energy CT aortography with 50% reduced iodine dose versus single-energy CT aortography with standard iodine dose. Acad Radiol. 2016;23:611–8.PubMedPubMedCentralGoogle Scholar
  193. 193.
    Agrawal MD, Oliveira GR, Kalva SP, Pinho DF, Arellano RS, Sahani DV. Prospective comparison of reduced-iodine-dose virtual monochromatic imaging dataset from dual-energy CT angiography with standard-iodine-dose single-energy CT angiography for abdominal aortic aneurysm. AJR Am J Roentgenol. 2016;207:W125–32.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Nagayama Y, Nakaura T, Oda S, Utsunomiya D, Funama Y, Iyama Y, Taguchi N, Namimoto T, Yuki H, Kidoh M, Hirata K, Nakagawa M, Yamashita Y. Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load: a matched-pair comparison with a 120 kVp protocol. Eur Radiol. 2018;28:1719–30.PubMedPubMedCentralGoogle Scholar
  195. 195.
    Abujudeh HH, Gee MS, Kaewlai R. In emergency situations, should serum creatinine be checked in all patients before performing second contrast CT examinations within 24 hours? J Am Coll Radiol. 2009;6:268–73.PubMedPubMedCentralGoogle Scholar
  196. 196.
    Trivedi H, Foley WD. Contrast-induced nephropathy after a second contrast exposure. Ren Fail. 2010;32:796–801.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Hong SI, Ahn S, Lee YS, Kim WY, Lim KS, Lee JH, Lee JL. Contrast-induced nephropathy in patients with active cancer undergoing contrast-enhanced computed tomography. Support Care Cancer. 2016;24:1011–7.PubMedPubMedCentralGoogle Scholar
  198. 198.
    Hopyan JJ, Gladstone DJ, Mallia G, Schiff J, Fox AJ, Symons SP, Buck BH, Black SE, Aviv RI. Renal safety of CT angiography and perfusion imaging in the emergency evaluation of acute stroke. AJNR Am J Neuroradiol. 2008;29:1826–30.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Oleinik A, Romero JM, Schwab K, Lev MH, Jhawar N, Delgado Almandoz JE, Smith EE, Greenherg SM, Rosand J, Goldstein JN. CT angiography for intracerebral hemorrhage does not increase risk of acute nephropathy. Stroke. 2009;40:2393–7.PubMedPubMedCentralGoogle Scholar
  200. 200.
    Langner S, Stumpe S, Kirsch M, Petrik M, Hosten N. No increased risk for contrast-induced nephropathy after multiple CT perfusion studies of the brain with a nonionic, dimeric, iso-osmolal contrast medium. AJNR Am J Neuroradiol. 2008;29:1525–9.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Lima FO, Lev MH, Levy RA, Silva GS, Ebril M, de Camargo EC, Pomerantz S, Singhal AB, Greer DM, Ay H, González RG, Koroshetz WJ, Smith WS, Furie KL. Functional contrast-enhanced CT for evaluation of acute ischemic stroke does not increase the risk of contrast-induced nephropathy. AJNR Am J Neuroradiol. 2010;31:817–21.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Eisenberg RL, Bank WO, Hedgcock MW. Renal failure after major angiography. Am J Med. 1980;68:43–6.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Eisenberg RL, Bank WO, Hedgock MW. Renal failure after major angiography can be avoided with hydration. AJR Am J Roentgenol. 1981;136:859–61.PubMedPubMedCentralGoogle Scholar
  204. 204.
    Trivedi HS, Moore H, Nasr S, Aggarwal K, Agrawal A, Goel P, Hewett J. A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract. 2003;93:C29–34.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Recio-Mayoral A, Chaparro M, Prado B, Cozar R, Mendez I, Banerjee D, Kaski JC, Cubero J, Cruz JM. The reno-protective effect of hydration with sodium bicarbonate plus N-acetylcysteine in patients undergoing emergency percutaneous coronary intervention: the RENO Study. J Am Coll Cardiol. 2007;49:1283–8.PubMedPubMedCentralGoogle Scholar
  206. 206.
    Jurado-Roman A, Hernandez-Hernandez F, Garcia-Tejada J, Granda-Nistal C, Molina J, Velazquez M, Albarran A, Tascon J. Role of hydration in contrast-induced nephropathy in patients who underwent primary percutaneous coronary intervention. Am J Cardiol. 2015;115:1174–8.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Mueller C, Buerkle G, Buettner HJ, Petersen J, Perruchoud AP, Eriksson U, Marsch S, Roskamm H. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med. 2002;162:329–36.PubMedPubMedCentralGoogle Scholar
  208. 208.
    Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, Ommen VV, Wildberger JE. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389:1312–22.PubMedPubMedCentralGoogle Scholar
  209. 209.
    Wrobel W, Sinkiewicz W, Gordon M, Wozniak-Wisniewska A. Oral versus intravenous hydration and renal function in diabetic patients undergoing percutaneous coronary interventions. Kardiol Pol. 2010;68:1015–20.PubMedPubMedCentralGoogle Scholar
  210. 210.
    Akyuz S, Karaca M, Kemaloglu Oz T, Altay S, Gungor B, Yaylak B, Yazici S, Ozden K, Karakus G, Cam N. Efficacy of oral hydration in the prevention of contras-induced acute kidney injury in patients undergoing coronary angiography or intervention. Nephron Clin Pract. 2014;128:95–100.PubMedPubMedCentralGoogle Scholar
  211. 211.
    Kong DG, Hou YF, Ma LL, Yao DK, Wang LX. Comparison of oral and intravenous hydration strategies for the prevention of contrast-induced nephropathy in patients undergoing coronary angiography or angioplasty: a randomized clinical trial. Acta Cardiol. 2012;67:565–9.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Taylor AJ, Hotchkiss D, Morse RW, McCabe J. PREPARED: preparation for angiography in renal dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction. Chest. 1998;114:1570–4.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Dussol B, Morange S, Loundoun A, Auquier P, Berland Y. A randomized trial of saline hydration to prevent contrast nephropathy in chronic renal failure patients. Nephrol Dial Transplant. 2006;21:2120–6.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Zoungas S, Ninomiya T, Huxley R, Cass A, Jardine M, Gallagher M, Patel A, Vasheghani-Farahani A, Sadigh G, Perkovic V. Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med. 2009;151:631–8.PubMedPubMedCentralGoogle Scholar
  215. 215.
    Meier P, Ko DT, Tamura A, Tamhane U, Gurm HS. Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis. BMC Med. 2009;7:23.PubMedPubMedCentralGoogle Scholar
  216. 216.
    Kanbay M, Covic A, Coca SG, Turgut F, Akcay A, Parikh CR. Sodium bicarbonate for the prevention of contrast-induced nephropathy: a meta-analysis of 17 randomized trials. Int Urol Nephrol. 2009;41:617–27.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Hogan SE, L’Allier P, Chetcuti S, Grossman PM, Nallamothu BK, Duvernoy C, Bates E, Moscucci M, Gurm HS. Current role of sodium bicarbonate-based preprocedural hydration for the prevention of contrast-induced acute kidney injury: a meta-analysis. Am Heart J. 2008;156:414–21.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Joannidis M, Schmid M, Wiedermann CJ. Prevention of contrast media-induced nephropathy by isotonic sodium bicarbonate: a meta-analysis. Wien Klin Wochenschr. 2008;120:742–8.PubMedPubMedCentralGoogle Scholar
  219. 219.
    Navaneethan SD, Singh S, Appasamy S, Wing RE, Sehgal AR. Sodium bicarbonate therapy for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53:617–27.PubMedPubMedCentralGoogle Scholar
  220. 220.
    Trivedi H, Nadella R, Szabo A. Hydration with sodium bicarbonate for the prevention of contrast-induced nephropathy: a meta-analysis of randomized controlled trials. Clin Nephrol. 2010;74:288–96.PubMedPubMedCentralGoogle Scholar
  221. 221.
    Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, Leon MB. Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4:1584–92.PubMedPubMedCentralGoogle Scholar
  222. 222.
    Tamai N, Ito S, Nakasuka K, Morimoto K, Miyata K, Inomata M, Yoshida T, Suzuki S, Murakami Y, Sato K. Sodium bicarbonate for the prevention of contrast-induced nephropathy: the efficacy of high concentration solution. J Invasive Cardiol. 2012;24:439–42.PubMedPubMedCentralGoogle Scholar
  223. 223.
    Brar SS, Shen AY, Jorgensen MB, Kotlewski A, Aharonian VJ, Desai N, Ree M, Shah AI, Burchette RJ. Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial. JAMA. 2008;300:1038–46.PubMedPubMedCentralGoogle Scholar
  224. 224.
    Ueda H, Yamada T, Masuda M, Okuyama Y, Morita T, Furukawa Y, Koji T, Iwasaki Y, Okada T, Kawasaki M, Kuramoto Y, Naito T, Fujimoto T, Komuro I, Fukunami M. Prevention of contrast-induced nephropathy by bolus injection of sodium bicarbonate in patients with chronic kidney disease undergoing emergent coronary procedures. Am J Cardiol. 2011;107:1163–7.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Tamura A, Goto Y, Miyamoto K, Naono S, Kawano Y, Kotoku M, Watanabe T, Kadota J. Efficacy of single-bolus administration of sodium bicarbonate to prevent contrast-induced nephropathy in patients with mild renal insufficiency undergoing an elective coronary procedure. Am J Cardiol. 2009;104:921–5.PubMedPubMedCentralGoogle Scholar
  226. 226.
    Motohiro M, Kamihata H, Tsujimoto S, Seno T, Manabe K, Isono T, Sutani Y, Yuasa F, Iwasaka T. A new protocol using sodium bicarbonate for the prevention of contrast-induced nephropathy in patients undergoing coronary angiography. Am J Cardiol. 2011;107:1604–8.PubMedPubMedCentralGoogle Scholar
  227. 227.
    Lee SW, Kim WJ, Kim YH, Park SW, Park DW, Yun SC, Lee JY, Kang SJ, Lee CW, Lee JH, Choi SW, Seong IW, Suh J, Cho YH, Lee NH, Cheong SS, Yoo SY, Lee BK, Lee SG, Hyon MS, Shin WY, Lee SW, Jang JS, Park SJ. Preventive strategies of renal insufficiency in patients with diabetes undergoing intervention or arteriography (the PREVENT Trial). Am J Cardiol. 2011;107:1447–52.PubMedPubMedCentralGoogle Scholar
  228. 228.
    Vasheghani-Farahani A, Sadigh G, Kassaian SE, Khatami SM, Fotouhi A, Razavi SA, Mansournia MA, Yamini-Sharif A, Amirzadegan A, Salarifar M, Sadeghian S, Davoodi G, Borumand MA, Esfehani FA, Darabian S. Sodium bicarbonate plus isotonic saline versus saline for prevention of contrast-induced nephropathy in patients undergoing coronary angiography: a randomized controlled trial. Am J Kidney Dis. 2009;54:610–8.PubMedPubMedCentralGoogle Scholar
  229. 229.
    Vasheghani-Farahani A, Sadigh G, Kassaian SE, Khatami SM, Fotouhi A, Razavi SA, Mansournia MA, Kazemisaeid A, Soleimani A, Pourhosseini HR, Alidoosti M, Hajizeinali AM, Hoseini K, Nematipour E. Sodium bicarbonate in preventing contrast nephropathy in patients at risk for volume overload: a randomized controlled trial. J Nephrol. 2010;23:216–23.PubMedPubMedCentralGoogle Scholar
  230. 230.
    Shavit L, Korenfeld R, Lifschitz M, Butnaru A, Slotki I. Sodium bicarbonate versus sodium chloride and oral N-acetylcysteine for the prevention of contrast-induced nephropathy in advanced chronic kidney disease. J Interv Cardiol. 2009;22:556–63.PubMedPubMedCentralGoogle Scholar
  231. 231.
    Maioli M, Toso A, Leoncini M, Micheletti C, Bellandi F. Effects of hydration in contrast-induced acute kidney injury after primary angioplasty: a randomized, controlled trial. Circ Cardiovasc Interv. 2011;4:456–62.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Manari A, Magnavacchi P, Puggioni E, Vignali L, Fiaccadori E, Menozzi M, Tondi S, Robotti S, Ferrari D, Valgimigli M. Acute kidney injury after primary angioplasty: effect of different hydration treatments. J Cardiovasc Med (Hagerstown). 2014;15:60–7.Google Scholar
  233. 233.
    Gomes VO, Lasevitch R, Lima VC, Brito FS Jr, Perez-Alva JC, Moulin B, Arruda A, Oliveira D, Caramori P. Hydration with sodium bicarbonate does not prevent contrast nephropathy: a multicenter clinical trial. Arq Bras Cardiol. 2012;99:1129–34.PubMedPubMedCentralGoogle Scholar
  234. 234.
    Boucek P, Havrdova T, Oliyarnyk O, Skibova J, Pecenkova V, Pucelikova T, Sarkady D. Prevention of contrast-induced nephropathy in diabetic patients with impaired renal function: a randomized, double blind trial of sodium bicarbonate versus sodium chloride-based hydration. Diabetes Res Clin Pract. 2013;101:303–8.PubMedPubMedCentralGoogle Scholar
  235. 235.
    Solomon R, Gordon P, Manoukian SV, Abbott JD, Kereiakes DJ, Jeremias A, Kim M, Dauerman HL, Investigators BT. Randomized trial of bicarbonate or saline study for the prevention of contrast-induced nephropathy in patients with CKD. Clin J Am Soc Nephrol. 2015;10:1519–24.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Klima T, Christ A, Marana I, Kalbermatter S, Uthoff H, Burri E, Hartwiger S, Schindler C, Breidthardt T, Marenzi G, Mueller C. Sodium chloride vs. sodium bicarbonate for the prevention of contrast medium-induced nephropathy: a randomized controlled trial. Eur Heart J. 2012;33:2071–9.PubMedPubMedCentralGoogle Scholar
  237. 237.
    Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, Conner TA, Chertow GM, Bhatt DL, Shunk K, Parikh CR, McFalls EO, Brophy M, Ferguson R, Wu H, Androsenko M, Myles J, Kaufman J, Palevsky PM, Group PT. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2018;378(7):603–14.PubMedPubMedCentralGoogle Scholar
  238. 238.
    Krasuski RA, Beard BM, Geoghagan JD, Thompson CM, Guidera SA. Optimal timing of hydration to erase contrast-associated nephropathy: the OTHER CAN study. J Invasive Cardiol. 2003;15:699–702.PubMedPubMedCentralGoogle Scholar
  239. 239.
    Bader BD, Berger ED, Heede MB, Silberbaur I, Duda S, Risler T, Erley CM. What is the best hydration regimen to prevent contrast media-induced nephrotoxicity? Clin Nephrol. 2004;62:1–7.PubMedPubMedCentralGoogle Scholar
  240. 240.
    Maioli M, Toso A, Leoncini M, Gallopin M, Tedeschi D, Micheletti C, Bellandi F. Sodium bicarbonate versus saline for the prevention of contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. J Am Coll Cardiol. 2008;52:599–604.PubMedPubMedCentralGoogle Scholar
  241. 241.
    Briguori C, Airoldi F, D’Andrea D, Bonizzoni E, Morici N, Focaccio A, Michev I, Montorfano M, Carlino M, Cosgrave J, Ricciardelli B, Colombo A. Renal Insufficiency Following Contrast Media Administration Trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation. 2007;115:1211–7.PubMedPubMedCentralGoogle Scholar
  242. 242.
    Yang K, Liu W, Ren W, Lv S. Different interventions in preventing contrast- induced nephropathy after percutaneous coronary intervention. Int Urol Nephrol. 2014;46:1801–7.PubMedPubMedCentralGoogle Scholar
  243. 243.
    Yeganehkhah MR, Iranirad L, Dorri F, Pazoki S, Akbari H, Miryounesi M, Vahedian M, Nazeri A, Hosseinzadeh F, Vafaeimanesh J. Comparison between three supportive treatments for prevention of contrast-induced nephropathy in high-risk patients undergoing coronary angiography. Saudi J Kidney Dis Transpl. 2014;25(6):1217–23.PubMedPubMedCentralGoogle Scholar
  244. 244.
    Weisbord SD, Gallagher M, Kaufman J, Cass A, Parikh CR, Chertow GM, Shunk KA, McCullough PA, Fine MJ, Mor MK, Lew RA, Huang GD, Conner TA, Brophy MT, Lee J, Soliva S, Palevsky PM. Prevention of contrast-induced AKI: a review of published trials and the design of the prevention of serious adverse events following angiography (PRESERVE) trial. Clin J Am Soc Nephrol. 2013;8(9):1618–31.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Traub SJ, Mitchell AM, Jones AE, Tang A, OʼConnor J, Nelson T, Kellum J, Shapiro NI. N-Acetylcysteine plus intravenous fluids versus intravenous fluids alone to prevent contrast-induced nephropathy in emergency computed tomography. Ann Emerg Med. 2013;62(511–520):e25.Google Scholar
  246. 246.
    Thayssen P, Lassen JF, Jensen SE, Hansen KN, Hansen HS, Christiansen EH, Junker A, Ravkilde J, Thuesen L, Veien KT, Jensen LO. Prevention of contrast-induced nephropathy with N-acetylcysteine or sodium bicarbonate in patients with ST-segment myocardial infarction: a prospective, randomized, open-labeled trial. Circ Cardiovasc Interv. 2014;7:216–24.PubMedPubMedCentralGoogle Scholar
  247. 247.
    Tanaka A, Suzuki Y, Suzuki N, Hirai T, Yasuda N, Miki K, Fujita M, Tanaka T. Does N-acetylcysteine reduce the incidence of contrast-induced nephropathy and clinical events in patients undergoing primary angioplasty for acute myocardial infarction? Intern Med. 2011;50:673–7.PubMedPubMedCentralGoogle Scholar
  248. 248.
    Sadat U, Walsh SR, Norden AG, Gillard JH, Boyle JR. Does oral N-acetylcysteine reduce contrast-induced renal injury in patients with peripheral arterial disease undergoing peripheral angiography? A randomized-controlled study. Angiology. 2011;62(3):225–30.PubMedPubMedCentralGoogle Scholar
  249. 249.
    Kama A, Yilmaz S, Yaka E, Dervisoglu E, Dogan NÖ, Erimsah E, Pekdemir M. Comparison of short-term infusion regimens of N-acetylcysteine plus intravenous fluids, sodium bicarbonate plus intravenous fluids, and intravenous fluids alone for prevention of contrast-induced nephropathy in the emergency department. Acad Emerg Med. 2014;21:615–22.PubMedPubMedCentralGoogle Scholar
  250. 250.
    Jaffery Z, Verma A, White CJ, Grant AG, Collins TJ, Grise MA, Jenkins JS, McMullan PW, Patel RA, Reilly JP, Thornton SN, Ramee SR. A randomized trial of intravenous N-acetylcysteine to prevent contrast induced nephropathy in acute coronary syndromes. Catheter Cardiovasc Interv. 2012;79:921–6.PubMedPubMedCentralGoogle Scholar
  251. 251.
    Hsu TF, Huang MK, Yu SH, Yen DH, Kao WF, Chen YC, Huang MS. N-acetylcysteine for the prevention of contrast-induced nephropathy in the emergency department. Intern Med. 2012;51:2709–14.PubMedPubMedCentralGoogle Scholar
  252. 252.
    Habib M, Hillis A, Hammad A. N-acetylcysteine and/or ascorbic acid versus placebo to prevent contrast-induced nephropathy in patients undergoing elective cardiac catheterization: the NAPCIN trial; a single-center, prospective, randomized trial. Saudi J Kidney Dis Transpl. 2016;27(1):55–61.PubMedPubMedCentralGoogle Scholar
  253. 253.
    Gunebakmaz O, Kaya MG, Koc F, Akpek M, Kasapkara A, Inanc MT, Yarlioglues M, Calapkorur B, Karadag Z, Oguzhan A. Does nebivolol prevent contrast induced nephropathy in humans? Clin Cardiol. 2012;35:250–4.PubMedPubMedCentralGoogle Scholar
  254. 254.
    Erturk M, Uslu N, Gorgulu S, Akbay E, Kurtulus G, Akturk IF, Akgul O, Surgit O, Uzun F, Gul M, Isiksacan N, Yildirim A. Does intravenous or oral high-dose N-acetylcysteine in addition to saline prevent contrast-induced nephropathy assessed by cystatin C? Coron Artery Dis. 2014;25:111–7.PubMedPubMedCentralGoogle Scholar
  255. 255.
    Droppa M, Desch S, Blase P, Eitel I, Fuernau G, Schuler G, Adams V, Thiele H. Impact of N-acetylcysteine on contrast-induced nephropathy defined by cystatin C in patients with ST-elevation myocardial infarction undergoing primary angioplasty. Clin Res Cardiol. 2011;100:1037–43.PubMedPubMedCentralGoogle Scholar
  256. 256.
    Chong E, Poh KK, Lu Q, Zhang JJ, Tan N, Hou XM, Ong HY, Azan A, Chen SL, Chen JY, Ali RM, Fang WY, Lau TW, Tan HC. Comparison of combination therapy of high-dose oral N-acetylcysteine and intravenous sodium bicarbonate hydration with individual therapies in the reduction of Contrast-induced Nephropathy during Cardiac Catheterisation and Percutaneous Coronary Intervention (CONTRAST): a multi-centre, randomised, controlled trial. Int J Cardiol. 2015;201:237–42.PubMedPubMedCentralGoogle Scholar
  257. 257.
    Brueck M, Cengiz H, Hoeltgen R, Wieczorek M, Boedeker RH, Scheibelhut C, Boening A. Usefulness of N-acetylcysteine or ascorbic acid versus placebo to prevent contrast-induced acute kidney injury in patients undergoing elective cardiac catheterization: a single-center, prospective, randomized, double-blind, placebo-controlled trial. J Invasive Cardiol. 2013;25:276–83.PubMedPubMedCentralGoogle Scholar
  258. 258.
    Investigators ACT. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized acetylcysteine for contrast-induced nephropathy trial (ACT). Circulation. 2011;124:1250–9.Google Scholar
  259. 259.
    Awal A, Ahsan SA, Siddique MA, Banerjee S, Hasan M, Zaman SM, Arzu J, Subedi B. Effect of hydration with or without N-acetylcysteine on contrast induced nephropathy in patients undergoing coronary angiography and percutaneous coronary intervention. Mymensingh Med J. 2011;20:264–9.PubMedPubMedCentralGoogle Scholar
  260. 260.
    Aslanger E, Uslu B, Akdeniz C, Polat N, Cizgici Y, Oflaz H. Intrarenal application of N-acetylcysteine for the prevention of contrast medium-induced nephropathy in primary angioplasty. Coron Artery Dis. 2012;23:265–70.PubMedPubMedCentralGoogle Scholar
  261. 261.
    Koc F, Ozdemir K, Kaya MG, Dogdu O, Vatankulu MA, Ayhan S, Erkorkmaz U, Sonmez O, Aygul MU, Kalay N, Kayrak M, Karabag T, Alihanoglu Y, Gunebakmaz O. Intravenous N-acetylcysteine plus high-dose hydration versus high-dose hydration and standard hydration for the prevention of contrast-induced nephropathy: CASIS—a multicenter prospective controlled trial. Int J Cardiol. 2012;155:418–23.PubMedPubMedCentralGoogle Scholar
  262. 262.
    Alioglu E, Saygi S, Turk U, Kirilmaz B, Tuzun N, Duman C, Tengiz I, Yildiz S, Ercan E. N-Acetylcysteine in preventing contrast-induced nephropathy assessed by cystatin C. Cardiovasc Ther. 2013;31:168–73.PubMedPubMedCentralGoogle Scholar
  263. 263.
    Agency for Healthcare Research and Quality. Contrast-induced nephropathy: comparative effectiveness of preventive measures. Comparative Effectiveness Review Number 156. AHRQ Publication No. 15 (16)-EHC023-EF. 2016.Google Scholar
  264. 264.
    Subramaniam RM, Suarez-Cuervo C, Wilson RF, Turban S, Zhang A, Sherrod C, Aboagye J, Eng J, Choi MJ, Hutfless S, Bass EB. Effectiveness of prevention strategies for contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164(6):406–41.PubMedPubMedCentralGoogle Scholar
  265. 265.
    Morikawa S, Sone T, Tsuboi H, Mukawa H, Morishima I, Uesugi M, Morita Y, Numaguchi Y, Okumura K, Murohara T. Renal protective effects and the prevention of contrast-induced nephropathy by atrial natriuretic peptide. J Am Coll Cardiol. 2009;53:1040–6.PubMedPubMedCentralGoogle Scholar
  266. 266.
    Okumura N, Hayashi M, Imai E, Ishii H, Yoshikawa D, Yasuda Y, Goto M, Matsuo S, Oiso Y, Murohara T. Effects of carperitide on contrast-induced acute kidney injury with a minimum volume of contrast in chronic kidney disease patients. Nephron Extra. 2012;2:303–10.PubMedPubMedCentralGoogle Scholar
  267. 267.
    Xing K, Fu X, Wang Y, Li W, Gu X, Hao G, Miao Q, Li S, Jiang Y, Fan W, Geng W. Effect of rhBNP on renal function in STEMI-HF patients with mild renal insufficiency undergoing primary PCI. Heart Vessels. 2016;31:490–8.PubMedPubMedCentralGoogle Scholar
  268. 268.
    Liu J, Xie Y, He F, Gao Z, Hao Y, Zu X, Chang L, Li Y. Recombinant brain natriuretic peptide for the prevention of contrast-induced nephropathy in patients with chronic kidney disease undergoing nonemergent percutaneous coronary intervention or coronary angiography: a randomized controlled trial. Biomed Res Int. 2016;2016:5985327.PubMedPubMedCentralGoogle Scholar
  269. 269.
    Liu JM, Xie YN, Gao ZH, Zu XG, Li YJ, Hao YM, Chang L. Brain natriuretic peptide for prevention of contrast-induced nephropathy after percutaneous coronary intervention or coronary angiography. Can J Cardiol. 2014;30:1607–12.PubMedPubMedCentralGoogle Scholar
  270. 270.
    Boscheri A, Weinbrenner C, Botzek B, Reynen K, Kuhlisch E, Strasser RH. Failure of ascorbic acid to prevent contrast-media induced nephropathy in patients with renal dysfunction. Clin Nephrol. 2007;68(5):279–86.PubMedPubMedCentralGoogle Scholar
  271. 271.
    Dvorsak B, Kanic V, Ekart R, Bevc S, Hojs R. Ascorbic acid for the prevention of contrast-induced nephropathy after coronary angiography in patients with chronic renal impairment: a randomized controlled trial. Ther Apher Dial. 2013;17(4):384–90.PubMedPubMedCentralGoogle Scholar
  272. 272.
    Spargias K, Alexopoulos E, Kyrzopoulos S, Iokovis P, Greenwood DC, Manginas A, Voudris V, Pavlides G, Buller CE, Kremastinos D, Cokkinos DV. Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation. 2004;110(18):2837–42.PubMedPubMedCentralGoogle Scholar
  273. 273.
    Zhou L, Chen H. Prevention of contrast induced nephropathy with ascorbic acid. Intern Med. 2012;51(6):531–5.PubMedPubMedCentralGoogle Scholar
  274. 274.
    Albabtain MA, Almasood A, Alshurafah H, Alamri H, Tamim H. Efficacy of ascorbic acid, N-acetylcysteine, or combination of both on top of saline hydration versus saline hydration alone on prevention of contrast-induced nephropathy: a prospective randomized study. J Interv Cardiol. 2013;26(1):90–6.PubMedPubMedCentralGoogle Scholar
  275. 275.
    Jo SH, Koo BK, Park JS, Kang HJ, Kim YJ, Kim HL, Chae IH, Choi DJ, Sohn DW, Oh BH, Park YB, Choi YS, Kim HS. N-Acetylcysteine versus Ascorbic acid for preventing contrast-Induced nephropathy in patients with renal insufficiency undergoing coronary angiography NASPI study—a prospective randomized controlled trial. Am Heart J. 2009;157(3):576–83.PubMedPubMedCentralGoogle Scholar
  276. 276.
    Komiyama K, Ashikaga T, Inagaki D, Miyabe T, Arai M, Yoshida K, Miyazawa S, Nakada A, Kawamura I, Masuda S, Nagamine S, Hojo R, Aoyama Y, Tsuchiyama T, Fukamizu S, Shibui T, Sakurada H. Sodium bicarbonate-ascorbic acid combination for prevention of contrast-induced nephropathy in chronic kidney disease patients undergoing catheterization. Circ J. 2017;81(2):235–40.PubMedPubMedCentralGoogle Scholar
  277. 277.
    Abaci O, Arat Ozkan A, Kocas C, Cetinkal G, Sukru Karaca O, Baydar O, Kaya A, Gurmen T. Impact of rosuvastatin on contrast-induced acute kidney injury in patients at high risk for nephropathy undergoing elective angiography. Am J Cardiol. 2015;115(7):867–71.PubMedPubMedCentralGoogle Scholar
  278. 278.
    Qiao B. Rosuvastatin attenuated contrast-induced nephropathy in diabetes patients with renal dysfunction. Int J Clin Exp Med. 2015;8(2):2342–9.PubMedPubMedCentralGoogle Scholar
  279. 279.
    Sanei H. Short term high dose atorvastatin for the prevention of contrast-induced nephropathy in patients undergoing computed tomography angiography. ARYA Atheroscler. 2014;10(5):252–8.PubMedPubMedCentralGoogle Scholar
  280. 280.
    Han Y, Zhu G, Han L, Hou F, Huang W, Liu H, Gan J, Jiang T, Li X, Wang W, Ding S, Jia S, Shen W, Wang D, Sun L, Qiu J, Wang X, Li Y, Deng J, Li J, Xu K, Xu B, Mehran R, Huo Y. Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease. J Am Coll Cardiol. 2014;63(1):62–70.PubMedPubMedCentralGoogle Scholar
  281. 281.
    Yun KH, Lim HJ, Hwang KB, Woo SH, Jeong JW, Kim YC, Joe DY, Ko JS, Rhee SJ, Lee EM, Oh SK. Effect of high dose rosuvastatin loading before percutaneous coronary intervention on contrast-induced nephropathy. Korean Circ J. 2014;44(5):301–6.PubMedPubMedCentralGoogle Scholar
  282. 282.
    Li W, Fu X, Wang Y, Li X, Yang Z, Wang X, Geng W, Gu X, Hao G, Jiang Y, Fan W, Wu W, Li S. Beneficial effects of high-dose atorvastatin pretreatment on renal function in patients with acute ST-segment elevation myocardial infarction undergoing emergency percutaneous coronary intervention. Cardiology. 2012;122(3):195–202.PubMedPubMedCentralGoogle Scholar
  283. 283.
    Patti G, Ricottini E, Nusca A, Colonna G, Pasceri V, DʼAmbrosio A, Montinaro A, Di Sciascio G. Short-term, high-dose Atorvastatin pretreatment to prevent contrast-induced nephropathy in patients with acute coronary syndromes undergoing percutaneous coronary intervention (from the ARMYDA-CIN[atorvastatin for reduction of myocardial damage during angioplasty- contrast-induced nephropathy]trial. Am J Cardiol. 2011;108(1):1–7.PubMedPubMedCentralGoogle Scholar
  284. 284.
    Jo SH, Koo BK, Park JS, Kang HJ, Cho YS, Kim YJ, Youn TJ, Chung WY, Chae IH, Choi DJ, Sohn DW, Oh BH, Park YB, Choi YS, Kim HS. Prevention of radiocontrast medium-induced nephropathy using short-term high-dose simvastatin in patients with renal insufficiency undergoing coronary angiography(PROMISS )trial—a randomized controlled study. Am Heart J. 2008;155(3):499. e1–8.PubMedPubMedCentralGoogle Scholar
  285. 285.
    Cruz DN, Goh CY, Marenzi G, Corradi V, Ronco C, Perazella MA. Renal replacement therapies for prevention of radiocontrast-induced nephropathy: a systematic review. Am J Med. 2012;125(66–78):e3.Google Scholar
  286. 286.
    Younathan CM, Kaude JV, Cook MD, Shaw GS, Peterson JC. Dialysis is not indicated immediately after administration of nonionic contrast agents in patients with end-stage renal disease treated by maintenance dialysis. AJR Am J Roentgenol. 1994;163:969–71.PubMedPubMedCentralGoogle Scholar
  287. 287.
    Payen D, de Pont AC, Sakr Y, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12:R74.PubMedPubMedCentralGoogle Scholar
  288. 288.
    Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, Mehta RL. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76:422–7.PubMedPubMedCentralGoogle Scholar
  289. 289.
    Abizaid AS, Clark CE, Mintz GS, Dosa S, Popma JJ, Pichard AD, Satler LF, Harvey M, Kent KM, Leon MB. Effects of dopamine and aminophylline on contrast-induced acute renal failure after coronary angioplasty in patients with preexisting renal insufficiency. Am J Cardiol. 1999;83:260–3.PubMedPubMedCentralGoogle Scholar
  290. 290.
    Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Lancet. 2000;356:2139–43.PubMedPubMedCentralGoogle Scholar
  291. 291.
    Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142(7):510–24.PubMedPubMedCentralGoogle Scholar
  292. 292.
    Lauschke A, Teichgraber UK, Frei U, Eckardt KU. Low-dose dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int. 2006;69:1669–74.PubMedPubMedCentralGoogle Scholar
  293. 293.
    Allgren RL, Marbury TC, Rahman SN, Weisberg LS, Fenves AZ, Lafayette RA, Sweet RM, Genter FC, Kurnik BR, Conger JD, Sayegh MH. Anaritide in acute tubular necrosis. N Engl J Med. 1997;336:828–34.PubMedPubMedCentralGoogle Scholar
  294. 294.
    Lewis J, Salem MM, Chertow GM, Weisberg LS, McGrew F, Marbury TC, Allgren RL. Atrial natriuretic factor in oliguric acute renal failure. Am J Kidney Dis. 2000;36:767–74.PubMedPubMedCentralGoogle Scholar
  295. 295.
    Swaerd K, Valsson F, Odencrants P, Samuelsson O, Ricksten SE. Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo-controlled trial. Crit Care Med. 2004;32:1310–5.Google Scholar
  296. 296.
    Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK. Atrial natriuretic peptide for management of acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4:261–7.PubMedPubMedCentralGoogle Scholar
  297. 297.
    Seabra VF, Balk EM, Liangos O, Sosa MA, Cendoroglo M, Jaber BL. Timing of renal replacement therapy initiation in acute renal failure: a meta-analysis. Am J Kidney Dis. 2008;52(2):272–84.PubMedPubMedCentralGoogle Scholar

Copyright information

© Japan Radiological Society 2019

Authors and Affiliations

  • Yoshitaka Isaka
    • 1
    Email author
  • Hiromitsu Hayashi
    • 2
  • Kazutaka Aonuma
    • 3
  • Masaru Horio
    • 4
  • Yoshio Terada
    • 5
  • Kent Doi
    • 6
  • Yoshihide Fujigaki
    • 7
  • Hideo Yasuda
    • 8
  • Taichi Sato
    • 8
  • Tomoyuki Fujikura
    • 8
  • Ryohei Kuwatsuru
    • 9
  • Hiroshi Toei
    • 9
  • Ryusuke Murakami
    • 2
  • Yoshihiko Saito
    • 10
  • Atsushi Hirayama
    • 11
  • Toyoaki Murohara
    • 12
  • Akira Sato
    • 13
  • Hideki Ishii
    • 12
  • Tadateru Takayama
    • 14
  • Makoto Watanabe
    • 10
  • Kazuo Awai
    • 15
  • Seitaro Oda
    • 16
  • Takamichi Murakami
    • 17
  • Yukinobu Yagyu
    • 18
  • Nobuhiko Joki
    • 19
  • Yasuhiro Komatsu
    • 20
  • Takamasa Miyauchi
    • 21
  • Yugo Ito
    • 22
  • Ryo Miyazawa
    • 23
  • Yoshihiko Kanno
    • 24
  • Tomonari Ogawa
    • 25
  • Hiroki Hayashi
    • 26
  • Eri Koshi
    • 27
  • Tomoki Kosugi
    • 28
  • Yoshinari Yasuda
    • 29
  • Japanese Society of Nephrology, Japan Radiological Society, and Japanese Circulation Society Joint Working Group
  1. 1.Department of NephrologyOsaka University Graduate School of MedicineOsakaJapan
  2. 2.Department of Clinical RadiologyGraduate School of Medicine, Nippon Medical SchoolTokyoJapan
  3. 3.Cardiology Department, Institute of Clinical MedicineUniversity of TsukubaIbarakiJapan
  4. 4.Kansai Medical HospitalOsakaJapan
  5. 5.Department of Endocrinology, Metabolism and Nephrology, Kochi Medical SchoolKochi UniversityKochiJapan
  6. 6.Department of Acute MedicineThe University of TokyoTokyoJapan
  7. 7.Division of Nephrology, Department of Internal MedicineTeikyo University School of MedicineTokyoJapan
  8. 8.First Department of MedicineHamamatsu University School of MedicineShizuokaJapan
  9. 9.Department of Radiology, Graduate School of MedicineJuntendo UniversityTokyoJapan
  10. 10.Department of Cardiovascular MedicineNara Medical UniversityNaraJapan
  11. 11.Department of CardiologyOsaka Police HospitalOsakaJapan
  12. 12.Department of CardiologyNagoya University Graduate School of MedicineAichiJapan
  13. 13.Department of Cardiology, Faculty of MedicineUniversity of TsukubaIbarakiJapan
  14. 14.Division of General Medicine, Department of MedicineNihon University School of MedicineTokyoJapan
  15. 15.Department of Diagnostic Radiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
  16. 16.Department of Diagnostic Radiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
  17. 17.Department of RadiologyKobe University Graduate School of MedicineHyogoJapan
  18. 18.Department of Radiology, Faculty of MedicineKindai UniversityOsakaJapan
  19. 19.Division of NephrologyToho University Ohashi Medical CenterTokyoJapan
  20. 20.Department of Healthcare Quality and SafetyGunma University Graduate School of MedicineGunmaJapan
  21. 21.Cedars Sinai Medical HospitalLos AngelesUSA
  22. 22.Department of NephrologySt. Luke’s International HospitalTokyoJapan
  23. 23.Department of RadiologySt. Luke’s International HospitalTokyoJapan
  24. 24.Department of NephrologyTokyo Medical UniversityTokyoJapan
  25. 25.Department of Nephrology and HypertensionSaitama Medical CenterSaitamaJapan
  26. 26.Department of NephrologyFujita Health University School of MedicineAichiJapan
  27. 27.Department of NephrologyKomaki City HospitalAichiJapan
  28. 28.NephrologyNagoya University Graduate School of MedicineAichiJapan
  29. 29.Department of CKD Initiatives/NephrologyNagoya University Graduate School of MedicineAichiJapan

Personalised recommendations