Skip to main content

Advertisement

Log in

Imaging findings in radiation therapy complications of the central nervous system

  • Review
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Radiation therapy is a useful treatment for tumors and vascular malformations of the central nervous system. Radiation therapy is associated with complications, including leukoencephalopathy, radiation necrosis, vasculopathy, and optic neuropathy. Secondary tumors are also often seen long after radiation therapy. Secondary tumors are often benign tumors, such as hemangiomas and meningiomas, but sometimes malignant gliomas and soft tissue sarcomas emerge. We review the imaging findings of complications that may occur after brain radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tofilon PJ, Fike JR. The radioresponse of the central nervous system: a dynamic process. Radiat Res. 2000;153:357–70.

    Article  PubMed  CAS  Google Scholar 

  2. Rogers LR. Neurologic complications of radiation. Continuum (Minneap Minn). 2012;18:343–54.

    Google Scholar 

  3. Hoeffner EG. Central nervous system complications of oncologic therapy. Hematol Oncol Clin North Am. 2016;30:899–920.

    Article  PubMed  Google Scholar 

  4. Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY. CNS complications of radiotherapy and chemotherapy. Lancet. 2009;374:1639–51.

    Article  PubMed  CAS  Google Scholar 

  5. Ebi J, Sato H, Nakajima M, Shishido F, et al. Incidence of leukoencephalopathy after whole-brain radiation therapy for brain metastases. Int J Radiat Oncol Biol Phys. 2013;85:1212–7.

    Article  PubMed  Google Scholar 

  6. Zhong X, Huang B, Feng J, Yang W, Liu H. Delayed leukoencephalopathy of non-small cell lung cancer patients with brain metastases underwent whole brain radiation therapy. J Neurooncol. 2015;125:177–81.

    Article  PubMed  CAS  Google Scholar 

  7. Common Terminology Criteria for Adverse Events (CTCAE); National cancer institute Web site. https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm. Accessed 24 June 2018.

  8. Kohutek ZA, Yamada Y, Chan TA, Brennan CW, Tabar V, Gutin PH, et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol. 2015;125:149–56.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217:377–84.

    Article  PubMed  CAS  Google Scholar 

  10. Mullins ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol. 2005;26:1967–72.

    PubMed  Google Scholar 

  11. Rogers LR, Gutierrez J, Scarpace L, Schultz L, Ryu S, Lord B, Movsas B, et al. Morphologic magnetic resonance imaging features of therapy-induced cerebral necrosis. J Neurooncol. 2011;101:25–32.

    Article  PubMed  CAS  Google Scholar 

  12. Asao C, Korogi Y, Kitajima M, Hirai T, Baba Y, Makino K, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26:1455–60.

    PubMed  Google Scholar 

  13. Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25:201–9.

    PubMed  Google Scholar 

  14. Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30:552–8.

    Article  PubMed  CAS  Google Scholar 

  15. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21:901–9.

    PubMed  CAS  Google Scholar 

  16. Sundgren PC. MR spectroscopy in radiation injury. AJNR Am J Neuroradiol. 2009;30:1469–76.

    Article  PubMed  CAS  Google Scholar 

  17. Weybright P, Sundgren PC, Maly P, Hassan DG, Nan B, Rohrer S, et al. Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol. 2005;185:1471–6.

    Article  PubMed  Google Scholar 

  18. Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40:615–35.

    Article  PubMed  CAS  Google Scholar 

  19. Tomura N, Kokubun M, Saginoya T, Mizuno Y, Kikuchi Y. Differentiation between treatment-induced necrosis and recurrent tumors in patients with metastatic brain tumors: comparison among 11C-Methionine-PET, FDG-PET, MR permeability imaging, and MRI-ADC-preliminary results. AJNR Am J Neuroradiol. 2017;38:1520–7.

    Article  PubMed  CAS  Google Scholar 

  20. Kim YH, Oh SW, Lim YJ, Park CK, Lee SH, Kang KW, et al. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg. 2010;112:758–65.

    Article  PubMed  Google Scholar 

  21. Kano H, Kondziolka D, Lobato-Polo J, Zorro O, Flickinger JC, Lunsford LD. T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery. Neurosurgery. 2010;66:486–91.

    Article  PubMed  Google Scholar 

  22. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9:453–61.

    Article  PubMed  Google Scholar 

  23. Young RJ, Gupta A, Shah AD, Graber JJ, Zhang Z, Shi W, et al. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology. 2011;76:1918–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Murphy ES, Xie H, Merchant TE, Yu JS, Chao ST, Suh JH. Review of cranial radiotherapy-induced vasculopathy. J Neurooncol. 2015;122:421–9.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou L, Xing P, Zou L, Shen J, Tian Y, Lu X. Middle cerebral artery stenosis in patients with nasopharyngeal carcinoma after radiotherapy: the incidence of stenosis and the risk factors. Br J Radiol. 2016;89:20150815.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kralik SF, Watson GA, Shih CS, Ho CY, Finke W, Buchsbaum J. Radiation-induced large vessel cerebral vasculopathy in pediatric patients with brain tumors treated with proton radiation therapy. Int J Radiat Oncol Biol Phys. 2017;99:817–24.

    Article  PubMed  Google Scholar 

  27. Gujral DM, Chahal N, Senior R, Harrington KJ, Nutting CM. Radiation-induced carotid artery atherosclerosis. Radiother Oncol. 2014;110:31–8.

    Article  PubMed  Google Scholar 

  28. Sattler MG, Vroomen PC, Sluiter WJ, Schers HJ, van den Berg G, Langendijk JA, et al. Incidence, causative mechanisms, and anatomic localization of stroke in pituitary adenoma patients treated with postoperative radiation therapy versus surgery alone. Int J Radiat Oncol Biol Phys. 2013;87:53–9.

    Article  PubMed  Google Scholar 

  29. Davis PC, Hoffman JC Jr, Pearl GS, Braun IF. CT evaluation of effects of cranial radiation therapy in children. AJR Am J Roentgenol. 1986;147:587–92.

    Article  PubMed  CAS  Google Scholar 

  30. Srinivasan KG, Ramprabananth S, Ushanandhini KP, Srividya S, Praveen Kumar M. Radiation-induced mineralizing microangiopathy in a case of recurrent craniopharyngioma. A case report. Neuroradiol J. 2010;23:412–5.

    Article  PubMed  CAS  Google Scholar 

  31. Kikuchi A, Maeda M, Hanada R, Okimoto Y, Ishimoto K, Kaneko T, et al. Moyamoya syndrome following childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;48:268–72.

    Article  PubMed  Google Scholar 

  32. Desai SS, Paulino AC, Mai WY, Teh BS. Radiation-induced moyamoya syndrome. Int J Radiat Oncol Biol Phys. 2006;65:1222–7.

    Article  PubMed  Google Scholar 

  33. Danesh-Meyer HV. Radiation-induced optic neuropathy. J Clin Neurosci. 2008;15:95–100.

    Article  PubMed  Google Scholar 

  34. Ferguson I, Huecker J, Huang J, McClelland C, Van Stavern G. Risk factors for radiation-induced optic neuropathy: a case-control study. Clin Exp Ophthalmol. 2017;45:592–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vinchon M, Leblond P, Caron S, Delestret I, Baroncini M, Coche B. Radiation-induced tumors in children irradiated for brain tumor: a longitudinal study. Childs Nerv Syst. 2011;27:445–53.

    Article  PubMed  Google Scholar 

  36. Yamanaka R, Hayano A, Kanayama T. Radiation-induced meningiomas: an exhaustive review of the literature. World Neurosurg. 2017;97:635–44.

    Article  PubMed  Google Scholar 

  37. Umansky F, Shoshan Y, Rosenthal G, Fraifeld S, Spektor S. Radiation-induced meningioma. Neurosurg Focus. 2008;24:E7.

    Article  PubMed  Google Scholar 

  38. Di Giannatale A, Morana G, Rossi A, Cama A, Bertoluzzo L, Barra S. Natural history of cavernous malformations in children with brain tumors treated with radiotherapy and chemotherapy. J Neurooncol. 2014;117:311–20.

    Article  PubMed  CAS  Google Scholar 

  39. Strenger V, Sovinz P, Lackner H, Dornbusch HJ, Lingitz H, Eder HG, et al. Intracerebral cavernous hemangioma after cranial irradiation in childhood. Incidence and risk factors. Strahlenther Onkol. 2008;184:276–80.

    Article  PubMed  Google Scholar 

  40. Koike T, Yanagimachi N, Ishiguro H, Yabe H, Yabe M, Morimoto T, et al. High incidence of radiation-induced cavernous hemangioma in long-term survivors who underwent hematopoietic stem cell transplantation with radiation therapy during childhood or adolescence. Biol Blood Marrow Transplant. 2012;18:1090–8.

    Article  PubMed  Google Scholar 

  41. Yamanaka R, Hayano A, Kanayama T. Radiation-induced gliomas: a comprehensive review and meta-analysis. Neurosurg Rev. 2016 Oct 5. [Epub ahead of print].

  42. Elsamadicy AA, Babu R, Kirkpatrick JP, Adamson DC. Radiation-induced malignant gliomas: a current review. World Neurosurg. 2015;83:530–42.

    Article  PubMed  Google Scholar 

  43. Salvati M, Frati A, Russo N, Caroli E, Polli FM, Minniti G, et al. Radiation-induced gliomas: report of 10 cases and review of the literature. Surg Neurol. 2003;60:60–7.

    Article  PubMed  Google Scholar 

  44. Yamanaka R, Hayano A. Radiation-induced sarcomas of the central nervous system: a systematic review. World Neurosurg. 2017;98(818–828):e7.

    Google Scholar 

  45. Koshy M, Paulino AC, Mai WY, Teh BS. Radiation-induced osteosarcomas in the pediatric population. Int J Radiat Oncol Biol Phys. 2005;63:1169–74.

    Article  PubMed  Google Scholar 

  46. Debnam JM, Guha-Thakurta N, Mahfouz YM, Garden AS, Benjamin RS, Sturgis EM, et al. Radiation-associated head and neck sarcomas: spectrum of imaging findings. Oral Oncol. 2012;48:155–61.

    Article  PubMed  Google Scholar 

  47. Helms Clyde A, Tumors Malignant Bone, Helms Clyde A. Fundamentals of skeletal radiology. 3rd ed. London: Elsevier; 1994. p. 37–9.

    Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Kanda.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical statement

This manuscript is a review article and does not contain any studies with human participants or animals performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanda, T., Wakabayashi, Y., Zeng, F. et al. Imaging findings in radiation therapy complications of the central nervous system. Jpn J Radiol 36, 519–527 (2018). https://doi.org/10.1007/s11604-018-0759-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-018-0759-7

Keywords

Navigation