Japanese Journal of Radiology

, Volume 36, Issue 7, pp 456–461 | Cite as

Simulation study of dosimetric effect in proton beam therapy using concomitant boost technique for unresectable pancreatic cancers

  • Nobuyoshi Fukumitsu
  • Toshiyuki Okumura
  • Yuichi Hiroshima
  • Toshiki Ishida
  • Haruko Numajiri
  • Keiko Nemoto Murofushi
  • Kayoko Ohnishi
  • Teruhito Aihara
  • Hitoshi Ishikawa
  • Koji Tsuboi
  • Hideyuki Sakurai
Original Article



The purpose of this study is to investigate the dose distribution of proton beam therapy (PBT) using a concomitant boost technique for unresectable pancreatic cancers.

Materials and methods

This simulation study involved 36 patients with unresectable pancreatic cancer. The irradiation dose was set as 67.5 gray equivalent (GyE) with 25 fractions using concomitant boost technique. The irradiation dose was set as 50 GyE to cover the whole target and another posterior beam of 17.5 GyE was added to ensure that 10% isodose line was not delivered to the gastrointestinal (GI) tract. Dose distribution of the gross tumor volume and GI tract was examined.


V55GyE, 60GyE, 65GyE were 80.8, 66.5, and 42.4%, respectively, and mean dose was 64.1 GyE in all patients. The distance from the GI tract showed significant difference in dose distribution (P = 0.002 in V55GyE, 0.0009 in V60GyE, 0.003 in V65GyE, and 0.02 in mean dose, respectively). Location, tumor diameter, or lymph nodes metastasis did not show any difference.


We found that irradiated dose is closely related to the distance from the GI tract. Clinically, this protocol is expected to have outstanding effects on local control of tumors compared to conventional PBT.


Pancreatic cancer Proton beam therapy Concomitant boost technique Gross tumor volume 



This study was partially supported by Grants-in-Aid for Scientific Research in Japan (no. 17H04256). We really appreciate Thomas D. Mayers, Medical English Communications Center, University of Tsukuba, for grammatical revision of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The institutional review board approved.


  1. 1.
    Hori M, Matsuda T, Shibata A, Katanoda K, Sobue T, Nishimoto H, et al. Cancer incidence and incidence rates in Japan in 2009: a study of 32 population-based cancer registries for the monitoring of cancer incidence in Japan (MCIJ) project. Jpn J Clin Oncol. 2015;45:884–91.CrossRefPubMedGoogle Scholar
  2. 2.
    Egawa S, Toma H, Ohigashi H, Okusaka T, Nakao A, Hatori T, et al. Japan pancreatic cancer registry; 30th year anniversary Japan pancreas society. Pancreas. 2012;41:985–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Epelbaum R, Rosenblatt E, Nasrallah S, Faraggi D, Gaitini D, Mizrahi S, et al. Phase II study of gemcitabine combined with radiation therapy in patients with localized, unresectable pancreatic cancer. J Surg Oncol. 2002;81:138–43.CrossRefPubMedGoogle Scholar
  4. 4.
    Li C-P, Chao Y, Chi K-H, Chan W-K, Teng H-C, Lee R-C, et al. Concurrent chemoradiotherapy treatment of locally advanced pancreatic cancer: gemcitabine versus 5-fluorouracil, a randomized controlled study. Int J Radiat Oncol Biol Phys. 2003;57:98–104.CrossRefPubMedGoogle Scholar
  5. 5.
    Mukherjee S, Hurt CN, Bridgewater J, Falk S, Cummins S, Wasan H, et al. Gemcitabine-based or capecitabine-based chemoradiotherapy for locally advanced pancreatic cancer (SCALOP): a multicentre, randomised, phase 2 trial. Lancet Oncol. 2013;14:317–26.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chuong MD, Springett GM, Freilich JM, Park CK, Weber JM, Mellon EA, et al. Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. Int J Radiat Oncol Biol Phys. 2013;86:516–22.CrossRefPubMedGoogle Scholar
  7. 7.
    Chung SY, Chang JS, Lee BM, Kim KH, Lee KJ, Seong J. Dose escalation in locally advanced pancreatic cancer patients receiving chemoradiotherapy. Radiother Oncol. 2017;123:438–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76:S10–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Suit HD, Goitein M, Tepper J, Koehler AM, Schmidt RA, Schneider R. Explorotory study of proton radiation therapy using large field techniques and fractionated dose schedules. Cancer. 1975;35:1646–57.CrossRefPubMedGoogle Scholar
  10. 10.
    Lawrence JH, Tobias CA, Born JL, Mc CR, Roberts JE, Anger HO, et al. Pituitary irradiation with high-energy proton beams: a preliminary report. Cancer Res. 1958;18:121–34.PubMedGoogle Scholar
  11. 11.
    Coutrakon G, Hubbard J, Johanning J, Maudsley G, Slaton T, Morton P. A performance study of the Loma Linda proton medical accelerator. Med Phys. 1994;21:1691–701.CrossRefPubMedGoogle Scholar
  12. 12.
    Hsiung-Stripp DC, McDonough J, Masters HM, Levin WP, Hahn SM, Jones HA, et al. Comparative treatment planning between proton and X-ray therapy in pancreatic cancer. Med Dosim. 2001;26:255–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Kozak KR, Kachnic LA, Adams J, Crowley EM, Alexander BM, Mamon HJ, et al. Dosimetric feasibility of hypofractionated proton radiotherapy for neoadjuvant pancreatic cancer treatment. Int J Radiat Oncol Biol Phys. 2007;68:1557–66.CrossRefPubMedGoogle Scholar
  14. 14.
    Bouchard M, Amos RA, Briere TM, Beddar S, Crane CH. Dose escalation with proton or photon radiation treatment for pancreatic cancer. Radiother Oncol. 2009;92:238–43.CrossRefPubMedGoogle Scholar
  15. 15.
    Hong TS, Ryan DP, Blaszkowsky LS, Mamon HJ, Kwak EL, Mino-Kenudson M, et al. Phase I study of preoperative short-course chemoradiation with proton beam therapy and capecitabine for resectable pancreatic ductal adenocarcinoma of the head. Int J Radiat Oncol Biol Phys. 2011;79:151–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Wo JY, Mamon HJ, Ferrone CR, Ryan DP, Blaszkowsky LS, Kwak EL, et al. Phase I study of neoadjuvant accelerated short course radiation therapy with photons and capecitabine for resectable pancreatic cancer. Radiother Oncol. 2014;110:160–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Terashima K, Demizu Y, Hashimoto N, Jin D, Mima M, Fujii O, et al. A phase I/II study of gemcitabine-concurrent proton radiotherapy for locally advanced pancreatic cancer without distant metastasis. Radiother Oncol. 2012;103:25–31.CrossRefPubMedGoogle Scholar
  18. 18.
    Kagawa K, Murakami M, Hishikawa Y, Abe M, Akagi T, Yanou T, et al. Preclinical biological assessment of proton and carbon ion beams at Hyogo Ion Beam Medical Center. Int J Radiat Oncol Biol Phys. 2002;54:928–38.CrossRefPubMedGoogle Scholar
  19. 19.
    Hofheinz RD, Wenz F, Post S, Matzdorff A, Laechelt S, Hartmann JT, et al. Chemoradiotherapy with capecitabine versus fluorouracil for locally advanced rectal cancer: a randomised, multicentre, non-inferiority, phase 3 trial. Lancet Oncol. 2012;13:579–88.CrossRefPubMedGoogle Scholar
  20. 20.
    Gregoire V, Ang K, Budach W, Grau C, Hamoir M, Langendijk JA, et al. Delineation of the neck node levels for head and neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother Oncol. 2014;110:172–81.CrossRefPubMedGoogle Scholar
  21. 21.
    Group EBCC, Group ER, Bijker N, Meijnen P, Peterse JL, Bogaerts J, et al. Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853—a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. J Clin Oncol. 2006;24:3381–7.CrossRefGoogle Scholar
  22. 22.
    Polgar C, Fodor J, Major T, Orosz Z, Nemeth G. The role of boost irradiation in the conservative treatment of stage I–II breast cancer. Pathol Oncol Res. 2001;7:241–50.CrossRefPubMedGoogle Scholar
  23. 23.
    Takatori K, Terashima K, Yoshida R, Horai A, Satake S, Ose T, et al. Upper gastrointestinal complications associated with gemcitabine-concurrent proton radiotherapy for inoperable pancreatic cancer. J Gastroenterol. 2014;49:1074–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Dreher C, Habermehl D, Ecker S, Brons S, El-Shafie R, Jakel O, et al. Optimization of carbon ion and proton treatment plans using the raster-scanning technique for patients with unresectable pancreatic cancer. Radiat Oncol. 2015;10:237.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sio TT, Merrell KW, Beltran CJ, Ashman JB, Hoeft KA, Miller RC, et al. Spot-scanned pancreatic stereotactic body proton therapy: a dosimetric feasibility and robustness study. Phys Med. 2016;32:331–42.CrossRefPubMedGoogle Scholar

Copyright information

© Japan Radiological Society 2018

Authors and Affiliations

  • Nobuyoshi Fukumitsu
    • 1
  • Toshiyuki Okumura
    • 1
  • Yuichi Hiroshima
    • 1
  • Toshiki Ishida
    • 1
  • Haruko Numajiri
    • 1
  • Keiko Nemoto Murofushi
    • 1
  • Kayoko Ohnishi
    • 1
  • Teruhito Aihara
    • 1
  • Hitoshi Ishikawa
    • 1
  • Koji Tsuboi
    • 1
  • Hideyuki Sakurai
    • 1
  1. 1.Department of Radiation OncologyUniversity of TsukubaTsukubaJapan

Personalised recommendations