Advertisement

Japanese Journal of Radiology

, Volume 35, Issue 3, pp 95–100 | Cite as

Respiratory gating and multifield technique radiotherapy for esophageal cancer

  • Atsushi Ohta
  • Motoki KaiduEmail author
  • Satoshi Tanabe
  • Satoru Utsunomiya
  • Ryuta Sasamoto
  • Katsuya Maruyama
  • Kensuke Tanaka
  • Hirotake Saito
  • Toshimichi Nakano
  • Miki Shioi
  • Haruna Takahashi
  • Naotaka Kushima
  • Eisuke Abe
  • Hidefumi Aoyama
Original Article
  • 275 Downloads

Abstract

Purpose

To investigate the effects of a respiratory gating and multifield technique on the dose-volume histogram (DVH) in radiotherapy for esophageal cancer.

Methods and materials

Twenty patients who underwent four-dimensional computed tomography for esophageal cancer were included. We retrospectively created the four treatment plans for each patient, with or without the respiratory gating and multifield technique: No gating-2-field, No gating-4-field, Gating-2-field, and Gating-4-field plans. We compared the DVH parameters of the lung and heart in the No gating-2-field plan with the other three plans.

Result

In the comparison of the parameters in the No gating-2-field plan, there are significant differences in the Lung V5Gy, V20Gy, mean dose with all three plans and the Heart V25Gy–V40Gy with Gating-2-field plan, V35Gy, V40Gy, mean dose with No Gating-4-field plan and V30Gy–V40Gy, and mean dose with Gating-4-field plan. The lung parameters were smaller in the Gating-2-field plan and larger in the No gating-4-field and Gating-4-field plans. The heart parameters were all larger in the No gating-2-field plan.

Conclusion

The lung parameters were reduced by the respiratory gating technique and increased by the multifield technique. The heart parameters were reduced by both techniques. It is important to select the optimal technique according to the risk of complications.

Keywords

Respiratory gating Multifield Esophageal cancer Organ at risk Dosimetry 

Notes

Acknowledgement

This work was partially supported by JSPS KAKENHI grant nos. 15H04903 and 15K19779.

Compliance with ethical standards

Conflict of interest

None declared by all authors.

References

  1. 1.
    Ishikura S, Nihei K, Ohtsu A, Boku N, Hironaka S, Mera K, et al. Long-term toxicity after definitive chemoradiotherapy for squamous cell carcinoma of the thoracic esophagus. J Clin Oncol. 2003;21:2697–702.CrossRefPubMedGoogle Scholar
  2. 2.
    Marks LB, Bentzen SM, Deasy JO, Kong FM, Bradley JD, Vogelius IS, et al. Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys. 2010;76:S70–6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gagliardi G, Constine LS, Moiseenko V, Correa C, Pierce LJ, Allen AM, et al. Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys. 2010;76:S77–85.CrossRefPubMedGoogle Scholar
  4. 4.
    Konski A, Li T, Christensen M, Cheng JD, Yu JQ, Crawford K, et al. Symptomatic cardiac toxicity is predicted by dosimetric and patient factors rather than changes in 18F-FDG PET determination of myocardial activity after chemoradiotherapy for esophageal cancer. Radiother Oncol. 2012;104:72–7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yamashita H, Kida S, Sakumi A, Haga A, Ito S, Onoe T, et al. Four-dimensional measurement of the displacement of internal fiducial markers during 320-multislice computed tomography scanning of thoracic esophageal cancer. Int J Radiat Oncol Biol Phys. 2011;79:588–95.CrossRefPubMedGoogle Scholar
  6. 6.
    Patel AA, Wolfgang JA, Niemierko A, Hong TS, Yock T, Choi NC. Implications of respiratory motion as measured by four-dimensional computed tomography for radiation treatment planning of esophageal cancer. Int J Radiat Oncol Biol Phys. 2009;74:290–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Kawaguchi G, Sasamoto R, Abe E, Ohta A, Sato H, Tanaka K, et al. The effectiveness of endoscopic submucosal dissection followed by chemoradiotherapy for superficial esophageal cancer. Radiat Oncol. 2015;10:31.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Underberg RW, Lagerwaard FJ, Slotman BJ, Cuijpers JP, Senan S. Benefit of respiration-gated stereotactic radiotherapy for stage I lung cancer: an analysis of 4DCT datasets. Int J Radiat Oncol Biol Phys. 2005;62:554–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Wagman R, Yorke E, Ford E, Giraud P, Mageras G, Minsky B, et al. Respiratory gating for liver tumors: use in dose escalation. Int J Radiat Oncol Biol Phys. 2003;55:659–68.CrossRefPubMedGoogle Scholar
  10. 10.
    Mageras GS, Pevsner A, Yorke ED, Rosenzweig KE, Ford EC, Hertanto A, et al. Measurement of lung tumor motion using respiration-correlated CT. Int J Radiat Oncol Biol Phys. 2004;60:933–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Underberg RW, de van Sornsen Koste JR, Lagerwaard FJ, Vincent A, Slotman BJ, Senan S. A dosimetric analysis of respiration-gated radiotherapy in patients with stage III lung cancer. Radiat Oncol. 2006;1:8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hau E, Rains M, Browne L, Muirhead R, Yeghiaian-Alvandi R. Minimal benefit of respiratory-gated radiation therapy in the management of thoracic malignancy. J Med Imaging Radiat Oncol. 2013;57:704–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Muirhead R, Featherstone C, Duffton A, Moore K, McNee S. The potential clinical benefit of respiratory gated radiotherapy (RGRT) in non-small cell lung cancer (NSCLC). Radiother Oncol. 2010;95:172–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Starkschall G, Forster KM, Kitamura K, Cardenas A, Tucker SL, Stevens CW. Correlation of gross tumor volume excursion with potential benefits of respiratory gating. Int J Radiat Oncol Biol Phys. 2004;60:1291–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Kole TP, Aghayere O, Kwah J, Yorke ED, Goodman KA. Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer. Int J Radiat Oncol Biol Phys. 2012;83:1580–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Qi XS, Hu A, Wang K, Newman F, Crosby M, Hu B, et al. Respiration induced heart motion and indications of gated delivery for left-sided breast irradiation. Int J Radiat Oncol Biol Phys. 2012;82:1605–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Fukada J, Shigematsu N, Takeuchi H, Ohashi T, Saikawa Y, Takaishi H, et al. Symptomatic pericardial effusion after chemoradiation therapy in esophageal cancer patients. Int J Radiat Oncol Biol Phys. 2013;87:487–93.CrossRefPubMedGoogle Scholar

Copyright information

© Japan Radiological Society 2017

Authors and Affiliations

  • Atsushi Ohta
    • 1
  • Motoki Kaidu
    • 1
    Email author
  • Satoshi Tanabe
    • 2
  • Satoru Utsunomiya
    • 3
  • Ryuta Sasamoto
    • 3
  • Katsuya Maruyama
    • 1
  • Kensuke Tanaka
    • 1
  • Hirotake Saito
    • 1
  • Toshimichi Nakano
    • 1
  • Miki Shioi
    • 2
  • Haruna Takahashi
    • 2
  • Naotaka Kushima
    • 2
  • Eisuke Abe
    • 1
  • Hidefumi Aoyama
    • 1
  1. 1.Department of Radiology and Radiation OncologyNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  2. 2.Department of Radiation OncologyNiigata University Medical and Dental HospitalNiigataJapan
  3. 3.School of Health SciencesNiigata UniversityNiigataJapan

Personalised recommendations