Japanese Journal of Radiology

, Volume 35, Issue 2, pp 43–52 | Cite as

Adaptive radiation therapy in head and neck cancer for clinical practice: state of the art and practical challenges

  • Ovidiu Veresezan
  • Idriss Troussier
  • Alexis LacoutEmail author
  • Sarah Kreps
  • Sophie Maillard
  • Aude Toulemonde
  • Pierre-Yves Marcy
  • Florence Huguet
  • Juliette Thariat


Modern radiation therapy techniques are characterized by high conformality to tumor volumes and steep dose gradients to spare normal organs. These techniques require accurate clinical target volume definitions and rigorous assessment of set up uncertainties using image guidance, a concept called image-guided radiation therapy. Due to alteration of patient anatomy, changes in tissue density/volumes and tumor shrinkage over the course of treatment, treatment accuracy may be challenged. This may result in excessive irradiation of organs at risk/healthy tissues and undercoverage of target volumes with a significant risk of locoregional failure. Adaptive radiation therapy (ART) is a concept allowing the clinician to reconsider the planned dose based on potential changes to accurately delivering the remaining radiation dose to the tumor while optimally minimizing irradiation of healthy tissues. There is little consensus on how to apply this concept in clinical practice. The current review investigates the current ART issues, including patient selection, clinical/dosimetric criteria and timing for re-planning, and practical technical issues. A practical algorithm is proposed for patient management in cases where ART is required.


Adaptive radiation therapy Head and neck squamous cell cancer Anatomy Dose Image guided radiotherapy (IGRT) Replanning 


Compliance with ethical standards

Conflict of interest

The authors have no financial conflict of interest and hereby waive their copyright.


  1. 1.
    Bataini JP, Jaulerry C, Brunin F, Ponvert D, Ghossein NA. Significance and therapeutic implications of tumor regression following radiotherapy in patients treated for squamous cell carcinoma of the oropharynx and pharyngolarynx. Head Neck. 1990;12:41–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Bataini JP, Bernier J, Jaulerry C, et al. Impact of neck node radioresponsiveness on the regional control probability in patients with oropharynx and pharyngolarynx cancers managed by definitive radiotherapy. Int J Radiat Oncol Biol Phys. 1987;13:817–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang T, Chi Y, Meldolesi E, Yan D. Automatic delineation of on-line head and neck computed tomography images: toward on line adaptive therapy. Int J Radiat Oncol Biol Phys. 2007;68:522–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Ramus L, Thariat J, Marcy PY, et al. Automatic segmentation using atlases in head and neck cancers: methodology. Cancer Radiother. 2010;14:206–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Barker JL Jr, Garden AS, Ang KK, et al. Quantification of volumetric and geometric changes occuring during fractionated radiotherapy for head and neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59:960–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Loo H, Fairfoul J, Chakrabarti A, et al. Tumor shrinkage and contour change during radiotherapy increase the dose to organ at risk but not the target volumes for head and neck cancer patients treated on the TomoTherapy HiArt™ system. Clin Oncol (R Coll Radiol). 2011;23:40–7.CrossRefGoogle Scholar
  7. 7.
    Castadot P, Geets X, Lee JA, Christian N, Gregoire V. Assessment by a deformable registration method of the volumetric and positional changes of target volumes and organs at risk in pharyngo-laryngeal tumors treated with concomitant chemo-radiation. Radiother Oncol. 2010;95:209–17.CrossRefPubMedGoogle Scholar
  8. 8.
    Yang SN, Liao CY, Chen SW, et al. Clinical implications of the tumor volume reduction rate in head-and-neck cancer during definitive intensity-modulated radiotherapy for organ preservation. Int J Radiat Oncol Biol Phys. 2011;79:1096–103.CrossRefPubMedGoogle Scholar
  9. 9.
    Hansen EK, Bucci MK, Quivey JM, Weinberg V, Xia P. Repeat CT imaging and replanning during the course of IMRT for head and neck cancer. Int J Radiat Oncol Biol Phys. 2006;64:355–62.CrossRefPubMedGoogle Scholar
  10. 10.
    Bhide SA, Davies M, Burke K, et al. Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: a prospective observational study. Int J Radiat Oncol Biol Phys. 2010;76:1360–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Mechalakos J, Lee N, Hunt M, Ling CC, Amols HI. The effect of significant tumor reduction on the dose distribution in intensity modulated radiotherapy for head-and-neck cancer: a case study. Med Dosim. 2009;34:250–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Bando R, Ikushima H, Tanaka T, et al. Changes of tumor and normal structures of the neck during radiation therapy for head and neck cancer requiring adaptive strategy. J Med Investig. 2013;60:46–51.CrossRefGoogle Scholar
  13. 13.
    Chen C, Fei Z, Bai P, Lin X, Pan J. Will weight loss cause significant dosimetric changes of target volumes and organs at risk in nasopharyngeal carcinoma treated with intensity-modulated radiotherapy? Med Dosim. 2014;39:34–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Duma MN, Kampfer S, Schuster T, Winkler C, Geinitz H. Adaptive radiotherapy for soft tissue changes during helical tomotherapt for head and neck cancer. Strahlenther Onkol. 2012;188:243–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Chen C, Lin X, Pan J, Fei Z, Chen L, Bai P. Is it necessary to repeat CT imaging and replanning during the course of intensity-modulated radiotherapy for locoregionally advanced nasopharyngeal carcinoma. Jpn J Radiol. 2013;31:593–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Robar JL, Day A, Clancey J, et al. Spacial and dosimetric variability of organs at risk in head and neck cancer intensity-modulated radiotherapy. Int J Radiat Oncol Phys. 2007;68:1121–30.CrossRefGoogle Scholar
  17. 17.
    Wang ZH, Yan C, Zhang ZY, et al. Radiation-induced volume changes in parotid and submandibular glands in patients with head and neck cancer receiving postoperative radiotherapy: a longitudinal study. Laryngoscope. 2009;119:1966–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee C, Langen KM, Lu W, et al. Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registration. Int J Rad Oncol Biol Phys. 2008;71:1563–71.CrossRefGoogle Scholar
  19. 19.
    Kuo YC, Wu TH, Chung TS, et al. Effects of regression of enlarged lymph nodes on radiation doses received by parotid glands during intensity-modulated radiotherapy for head and neck cancer. Am J Clin Oncol. 2006;29:600–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Vasquez Osorio EM, Hoogeman MS, Al-Mamgani A, et al. Local anatomic changes in parotid and submandibular glands during radiotherapy for oropharynx cancer and correlation with dose, studied in detail with nonrigid registration. Int J Radiat Oncol Biol Phys. 2008;70:875–82.CrossRefPubMedGoogle Scholar
  21. 21.
    Ballivy O, Parker W, Vuong T, Shenouda G, Patrocinio H. Impact of geometric uncertainties on dose distribution during intensity modulated radiotherapy of head and neck cancer: the need for a planning target volume and a planning organ-at-risk volume. Curr Oncol. 2006;13:108–15.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Cazoulat G, Lesaunier M, Simon A, Haigron P, Acosta O, Louvel G, Lafond C, Chajon E, Leseur J, de Crevoisier R. From image-guided radiotherapy to dose-guided radiotherapy. Cancer Radiother. 2011;15:691–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Ricchetti F, Wu B, McNutt T, Wong J, et al. Volumetric change of selected organs at risk during IMRT for oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 2011;80:161–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Kuo YC, Wu TH, Chung TS, et al. Effects of regression of enlarged lymph nodes on radiation doses received by parotid glands during intensity-modulated radiotherapy for head and neck cancer. Am J Clin Oncol. 2006;29:600–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Hunter KU, Fernandes LL, Vineberg KA, McShan D, Antonuk AE, et al. Parotid glands dose-effect relationships based on their actually delivered doses: implications for adaptive replanning in radiation therapy of head and neck cancer. Int J Radiat Oncol Biol Phys. 2013;87:676–82.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Capelle L, Mackenzie M, Field C, Parliament M, Ghosh S, Scrimger S. Adaptive radiotherapy using helical tomotherapy for head and neck cancer in definitive and postoperative settings: initial results. Clin Oncol. 2012;24:208–15.CrossRefGoogle Scholar
  27. 27.
    Jensen AD, Nill S, Huber PE, Bendl R, Debus J, Munter MW. A clinical concept for interfractional adaptive radiation therapy in the treatment of head and neck cancer. Int J Radiat Oncol Biol Phys. 2012;82:590–6.CrossRefPubMedGoogle Scholar
  28. 28.
    You SH, Kim SY, Lee CG, Keum KC, Kim JH, et al. Is there a clinical benefit to adaptive planning during tomotherapy in patients with head and neck xerostomia. Am J Clin Oncol. 2012;35:261–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Lai YL, Yang SN, Liang JA, Wang YC, Yu CY, et al. Impact of body-mass factors on setup displacement in patients with head and neck cancer treated with radiotherapy using daily on-line image guidance. Radiat Oncol. 2014;9:19.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mencarelli A, van Kranen SR, Hamming-Vrieze O, et al. Deformable image registration for adaptive radiation of head and neck cancer: accuracy and precision in the presence of tumor changes. Int J Radiat Oncol Phys Biol. 2014;90:680–7.CrossRefGoogle Scholar
  31. 31.
    Hardcastle N, Tome WA, Cannon DM, et al. A multi-institution evaluation deformable image registration algorithms for automatic organ delineation in adaptive head and neck radiotherapy. Radiat Oncol. 1012;7:90.CrossRefGoogle Scholar
  32. 32.
    Tsuji SY, Hwang A, Weinberg V, et al. Dosimetric evaluation of automatic segmentation for adaptive IMRT for head and neck cancer. Int J Radiat Oncol Biol Phys. 2010;77:707–14.CrossRefPubMedGoogle Scholar
  33. 33.
    Chao KSC, Bhide S, Chen H, Asper J, et al. Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using deformable image registration approach. Int J Radiat Oncol Biol Phys. 2007;68:1512–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Eiland RB, Maare C, Sjostrom D, Samsoe E, et al. Dosimetric and geometric evaluation of the use of deformable image registration in adaptive intensity-modulated radiotherapy for head and neck cancer. J Radiat Res. 2014;55:1002–8.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Macchia La, Fellin F, Amichetti M, et al. Systemic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head and neck, prostate, and pleural cancer. Radiat Oncol. 2012;7:160.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60:91–110.CrossRefGoogle Scholar
  37. 37.
    Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration. Comp Vis Image Underst. 2003;89:114–41.CrossRefGoogle Scholar
  38. 38.
    Wang H, Yuskevich PA. Spatial bias in multi-atlas segmentation. Conf Comput Vis Pattern Recognit Workshops. 2012;49:909–16.Google Scholar
  39. 39.
    Qazi AA, Pekar V, Kim J, et al. Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach. Med Phys. 2011;38:6160–70.CrossRefPubMedGoogle Scholar
  40. 40.
    Teguh DN, Levendag PC, Voet PW, et al. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. Int J Radiat Oncol Biol Phys. 2011;81:950–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Nithiananthan S, Shafer S, Uneri A, Mirota DJ, et al. Demons deformable registration of CT and cone beam CT using an iterative matching approach. Med Phys. 2011;38:1785–98.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kim H, Park SB, Monroe JI, et al. Quantitative analysis tools and digital phantoms for deformable image registration quality assurance. Technol Cancer Res Treat. 2014;14:1–12.CrossRefGoogle Scholar

Copyright information

© Japan Radiological Society 2016

Authors and Affiliations

  • Ovidiu Veresezan
    • 1
  • Idriss Troussier
    • 2
  • Alexis Lacout
    • 3
    Email author
  • Sarah Kreps
    • 4
  • Sophie Maillard
    • 5
  • Aude Toulemonde
    • 6
  • Pierre-Yves Marcy
    • 7
  • Florence Huguet
    • 8
  • Juliette Thariat
    • 9
  1. 1.Oncology RadiotherapyCentre Henri BecquerelRouenFrance
  2. 2.Oncology Radiotherapy Pitié SalepêtrièreParisFrance
  3. 3.Centre d’imagerie MédicaleAurillacFrance
  4. 4.Medical Oncology Radiotherapy, Georges Pompidou European HospitalParis Descartes UniversityParisFrance
  5. 5.Department Head and NeckCentre Oscar LambretLille CedexFrance
  6. 6.Saint Michel CentreLa RochelleFrance
  7. 7.Department of RadiologyCentre LacassagneNiceFrance
  8. 8.ParisFrance
  9. 9.Department of Radiation Oncology/Institut Universitaire de la Face et du Cou-Cancer Centre Antoine-LacassagneUniversity Nice Sophia-AntipolisNice Cedex 2France

Personalised recommendations