Japanese Journal of Radiology

, Volume 35, Issue 1, pp 25–30 | Cite as

Neurite orientation dispersion and density imaging for evaluation of corticospinal tract in idiopathic normal pressure hydrocephalus

  • Ryusuke IrieEmail author
  • Kohei Tsuruta
  • Masaaki Hori
  • Michimasa Suzuki
  • Koji Kamagata
  • Atsushi Nakanishi
  • Kouhei Kamiya
  • Madoka Nakajima
  • Masakazu Miyajima
  • Hajime Arai
  • Shigeki Aoki
Original Article



To evaluate diffusional changes of the corticospinal tract (CST) in patients with idiopathic normal pressure hydrocephalus (iNPH) by neurite orientation dispersion and density imaging (NODDI).

Materials and methods

Nineteen patients with iNPH and 12 healthy controls were included. Diffusion MRI data for NODDI were acquired with a 3-T system, using 32 motion-probing gradient directions with six b-values (from 0 to 2500 s/mm2). The orientation dispersion index (ODI), intra-cellular volume fraction (Vic), and isotropic volume fraction (Viso) of the CST were calculated by tract-specific analysis in patients and controls. We also measured the fractional anisotropy (FA) and apparent diffusion coefficient (ADC).


The ODI of the CST (0.087 ± 0.024 vs. 0.183 ± 0.051, P < 0.01, Mann-Whitney U test) and Vic of the CST (0.551 ± 0.061 vs. 0.628 ± 0.038, P < 0.01, Mann-Whitney U test) were significantly lower in iNPH patients than in healthy controls. In receiver-operating characteristic analysis, the area under the curve (AUC) of the ODI and FA were not significantly different (Fig. 4a, 0.987 vs. 0.904, P = 0.061), and the AUC of the Vic and ADC also showed no significant difference (Fig. 4b, 0.864 vs. 0.912, P = 0.194).


The NODDI can effectively evaluate the condition of neurites in the CST of iNPH patients, and the ODI could be clinically useful in the diagnosis of iNPH.


Neurite orientation dispersion and density imaging Idiopathic normal pressure hydrocephalus Diffusion MRI Tract-specific analysis 



This study was supported by a Research Grant from the Ministry of Health, Labor and Welfare of Japan (2014-Nanchi-General-052), supported by the program for Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from the Japan Agency for Medical Research and Development and funded by the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.


  1. 1.
    Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med. 1965;273:117–26.CrossRefGoogle Scholar
  2. 2.
    Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci. 1965;2(4):307–27.CrossRefGoogle Scholar
  3. 3.
    Marmarou A, Young HF, Aygok GA, Sawauchi S, Tsuji O, Yamamoto T, et al. Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg. 2005;102(6):987–97.CrossRefGoogle Scholar
  4. 4.
    Meier U, Lemcke J. Clinical outcome of patients with idiopathic normal pressure hydrocephalus three years after shunt implantation. Acta Neurochir Suppl. 2006;96:377–80.CrossRefGoogle Scholar
  5. 5.
    Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Illert M, Deuschl G. Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2001;70(3):289–97.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Akai K, Uchigasaki S, Tanaka U, Komatsu A. Normal pressure hydrocephalus. Neuropathological study. Acta Pathol Jpn. 1987;37(1):97–110.Google Scholar
  7. 7.
    Krauss JK, Regel JP, Vach W, Droste DW, Borremans JJ, Mergner T. Vascular risk factors and arteriosclerotic disease in idiopathic normal-pressure hydrocephalus of the elderly. Stroke. 1996;27(1):24–9.CrossRefGoogle Scholar
  8. 8.
    Assaf Y, Ben-Sira L, Constantini S, Chang LC, Beni-Adani L. Diffusion tensor imaging in hydrocephalus: initial experience. AJNR Am J Neuroradiol. 2006;27(8):1717–24.Google Scholar
  9. 9.
    Jang SH, Ho Kim S. Diffusion tensor imaging following shunt in a patient with hydrocephalus. J Neuroimaging. 2011;21(1):69–72.CrossRefGoogle Scholar
  10. 10.
    Scheel M, Diekhoff T, Sprung C, Hoffmann KT. Diffusion tensor imaging in hydrocephalus—findings before and after shunt surgery. Acta Neurochir (Wien). 2012;154(9):1699–706.CrossRefGoogle Scholar
  11. 11.
    Jurcoane A, Keil F, Szelenyi A, Pfeilschifter W, Singer OC, Hattingen E. Directional diffusion of corticospinal tract supports therapy decisions in idiopathic normal-pressure hydrocephalus. Neuroradiology. 2014;56(1):5–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim MJ, Seo SW, Lee KM, Kim ST, Lee JI, Nam DH, et al. Differential diagnosis of idiopathic normal pressure hydrocephalus from other dementias using diffusion tensor imaging. AJNR Am J Neuroradiol. 2011;32(8):1496–503.CrossRefPubMedGoogle Scholar
  13. 13.
    Hattori T, Ito K, Aoki S, Yuasa T, Sato R, Ishikawa M, et al. White matter alteration in idiopathic normal pressure hydrocephalus: tract-based spatial statistics study. AJNR Am J Neuroradiol. 2012;33(1):97–103.CrossRefPubMedGoogle Scholar
  14. 14.
    Nakanishi A, Fukunaga I, Hori M, Masutani Y, Takaaki H, Miyajima M, et al. Microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging. Neuroradiology. 2013;55(8):971–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61(4):1000–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M, et al. Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir (Tokyo). 2012; 52(11):775–809.Google Scholar
  17. 17.
    Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36(3):630–44.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48(3):452–8.CrossRefGoogle Scholar
  19. 19.
    Nilsson M, Latt J, Stahlberg F, van Westen D, Hagslatt H. The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. NMR Biomed. 2012;25(5):795–805.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaden E, Kelm ND, Carson RP, Does MD, Alexander DC. Multi-compartment microscopic diffusion imaging. Neuroimage. 2016;139:346–59.CrossRefPubMedGoogle Scholar
  21. 21.
    Billiet T, Madler B, D’Arco F, Peeters R, Deprez S, Plasschaert E, et al. Characterizing the microstructural basis of “unidentified bright objects” in neurofibromatosis type 1: a combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. Neuroimage Clin. 2014;4:649–58.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Timmers I, Zhang H, Bastiani M, Jansma BM, Roebroeck A, Rubio-Gozalbo ME. White matter microstructure pathology in classic galactosemia revealed by neurite orientation dispersion and density imaging. J Inherit Metab Dis. 2015;38(2):295–304.CrossRefPubMedGoogle Scholar
  23. 23.
    Kamiya K, Hori M, Miyajima M, Nakajima M, Suzuki Y, Kamagata K, et al. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging. PLoS One. 2014;9(8):e103842.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cohen Y, Assaf Y. High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues—a technical review. NMR Biomed. 2002;15(7–8):516–42.CrossRefPubMedGoogle Scholar
  25. 25.
    Hori M, Fukunaga I, Masutani Y, Taoka T, Kamagata K, Suzuki Y, et al. Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci. 2012;11(4):221–33.CrossRefPubMedGoogle Scholar
  26. 26.
    Ong HH, Wehrli FW. Quantifying axon diameter and intra-cellular volume fraction in excised mouse spinal cord with q-space imaging. Neuroimage. 2010;51(4):1360–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japan Radiological Society 2016

Authors and Affiliations

  • Ryusuke Irie
    • 1
    Email author
  • Kohei Tsuruta
    • 3
  • Masaaki Hori
    • 1
  • Michimasa Suzuki
    • 1
  • Koji Kamagata
    • 1
  • Atsushi Nakanishi
    • 1
  • Kouhei Kamiya
    • 2
  • Madoka Nakajima
    • 4
  • Masakazu Miyajima
    • 4
  • Hajime Arai
    • 4
  • Shigeki Aoki
    • 1
  1. 1.Department of RadiologyJuntendo University School of MedicineTokyoJapan
  2. 2.Department of Radiology, Graduate School of MedicineThe University of TokyoTokyoJapan
  3. 3.Department of Radiological SciencesTokyo Metropolitan University Graduate School of Human Health SciencesTokyoJapan
  4. 4.Department of NeurosurgeryJuntendo University School of MedicineTokyoJapan

Personalised recommendations