Japanese Journal of Radiology

, Volume 32, Issue 9, pp 561–567 | Cite as

Feasibility study of a breast density measurement within a direct photon-counting mammography scanner system

  • Youichi Machida
  • Mitsuhiro Tozaki
  • Tamiko Yoshida
  • Ai Saita
  • Mari Yakabe
  • Kanae Nii
Technical Note



To evaluate the clinical feasibility of breast density measurements by a new application within a direct photon-counting mammography scanner system.

Materials and methods

A retrospective study of consecutive women who underwent mammography using a direct photon-counting mammography scanner system (MicroDose mammography SI; Philips Digital Mammography Sweden AB) was performed at the authors’ institution between September and December 2013. Quantitative volumetric glandularity measurements were performed automatically for each acquired mammographic image using an application (Breast Density Measurement; Philips Digital Mammography Sweden AB). The quantitative volumetric glandularity of each breast was defined as the average values for the mediolateral oblique (MLO) and craniocaudal (CC) mammogram views.


Of the 44 women who underwent bilateral mammogram acquisitions, the breast density measurements were performed successfully in 40 patients (90.9 %). A very good to excellent correlation in the quantitative breast density measurements acquired from the MLO and CC images was obtained in the 40 evaluable patients (R = 0.99).


The calculated volumetric glandularity using this new application should correspond well with the true volumetric density of each breast.


Mammography Breast density measurement Application BI-RADS 


  1. 1.
    Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356:227–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Ursin G, Ma H, Wu AH, Bernstein L, Salane M, Parisky YR, et al. Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomark Prev. 2003;12:332–8.Google Scholar
  3. 3.
    Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, et al. Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst. 1995;87:1622–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, et al. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst. 1995;87:670–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Wolfe JN, Saftlas AF, Salane M. Mammographic parenchymal patterns and quantitative evaluation of mammographic densities: a case–control study. Am J Roentgenol. 1987;148:1087–92.CrossRefGoogle Scholar
  6. 6.
    Byrne C, Schairer C, Brinton LA, Wolfe J, Parekh N, Salane M, et al. Effects of mammographic density and benign breast disease on breast cancer risk (United States). Cancer Causes Control. 2001;12:103–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Harvey JA, Bovbjerg VE. Quantitative assessment of mammographic breast density: relationship with breast cancer risk. Radiology. 2004;230:29–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6:798–808.PubMedCrossRefGoogle Scholar
  9. 9.
    McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev. 2006;15:1159–69.CrossRefGoogle Scholar
  10. 10.
    Nagata C, Matsubara T, Fujita H, Nagao Y, Shibuya C, Kashiki Y, et al. Mammographic density and the risk of breast cancer in Japanese women. Br J Cancer. 2005;92:2102–6.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kotsuma Y, Tamaki Y, Nishimura T, Tsubai M, Ueda S, Shimazu K, et al. Quantitative assessment of mammographic density and breast cancer risk for Japanese women. Breast. 2008;17:27–35 Epub 2007 Aug 22.PubMedCrossRefGoogle Scholar
  12. 12.
    Wong CS, Lim GH, Gao F, Jakes RW, Offman J, Chia KS, et al. Mammographic density and its interaction with other breast cancer risk factors in an Asian population. Br J Cancer. 2011;2011(104):871–4. doi:10.1038/sj.bjc.6606085.Epub.CrossRefGoogle Scholar
  13. 13.
    Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ. The quantitative-analysis of mammographic densities. Phys Med Biol. 1994;39:1629–38.PubMedCrossRefGoogle Scholar
  14. 14.
    Sivaramakrishna R, Obuchowski NA, Chilcote WA, Powell KA. Automatic segmentation of mammographic density. Acad Radiol. 2001;8:250–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Highnam R, Pan X, Warren R, Jeffreys M, Smith GD, Brady M. Breast composition measurements using retrospective standard mammogram form (SMF). Phys Med Biol. 2006;51:2695–713.PubMedCrossRefGoogle Scholar
  16. 16.
    Highnam R, Jeffreys M, McCormack V, Warren R, Smith GD, Brady M. Comparing measurements of breast density. Phys Med Biol. 2007;52:5881–95.PubMedCrossRefGoogle Scholar
  17. 17.
    Kaufhold S, Dohrmann R, Ufer K, Meyer FM. Comparison of methods for the quantification of montmorillonite in bentonites. Appl Clay Sci. 2002;22:145–51.CrossRefGoogle Scholar
  18. 18.
    Pawluczyk O, Augustine BJ, Yaffe MJ, Rico D, Yang JW, Mawdsley GE, et al. A volumetric method for estimation of breast density on digitized screen-film mammograms. Med Phys. 2003;30:352–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Ducote JL, Molloi S. Quantification of breast density with dual energy mammography: a simulation study. Med Phys. 2008;35:5411–8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ducote JL, Molloi S. A quantification of breast density with dual energy mammography: an experimental feasibility study. Med Phys. 2010;37(793–801):24.Google Scholar
  21. 21.
    Ding H, Molloi S. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study. Phys Med Biol. 2012;2012(57):4719–38. doi:10.1088/0031-9155/57/15/4719.Epub.CrossRefGoogle Scholar
  22. 22.
    D’Orsi CJ, Vassett JW, Berg WA, Feig SA, Jackson VP, Kopans DB, et al. ACR BI-RADS––mammography. 4th ed. In: ACR breast imaging reporting and data system, breast imaging atlas. Reston: American College of Radiology; 2003.Google Scholar
  23. 23.
    Research questions about relationships among variables. In: Dawson B, Trapp RG, editors. Basic and clinical biostatistics, Chapter 8. 4th ed. New York: McGrawHill; 2004. pp. 190–220.Google Scholar
  24. 24.
    Venturini E, Losio C, Panizza P, Rodighiero MG, Fedele I, Tacchini S, et al. Tailored breast cancer screening program with microdose mammography, US, and MR imaging: short-term results of a pilot study in 40–49-year-old women. Radiology. 2013;2013(268):347–55. doi:10.1148/radiol.13122278.Epub.CrossRefGoogle Scholar
  25. 25.
    Heine JJ, Carston MJ, Scott CG, Brandt KR, Wu FF, Pankratz VS, et al. An automated approach for estimation of breast density. Cancer Epidemiol Biomark Prev. 2008;17:3090–7. doi:10.1158/1055-9965.EPI-08-0170.CrossRefGoogle Scholar
  26. 26.
    Jeffreys M, Warren R, Highnam R, Smith GD. Initial experiences of using an automated volumetric measure of breast density: the standard mammogram form. Br J Radiol. 2006;79:378–82.PubMedCrossRefGoogle Scholar
  27. 27.
    El-Bastawissi AY, White E, Mandelson MT, Taplin SH. Reproductive and hormonal factors associated with mammographic breast density by age (United States). Cancer Causes Control. 2000;11(10):955–63.PubMedCrossRefGoogle Scholar
  28. 28.
    El-Bastawissi AY, White E, Mandelson MT, Taplin S. Variation in mammographic breast density by race. Ann Epidemiol. 2001;11(4):257–63.PubMedCrossRefGoogle Scholar

Copyright information

© Japan Radiological Society 2014

Authors and Affiliations

  • Youichi Machida
    • 1
    • 2
  • Mitsuhiro Tozaki
    • 1
    • 3
  • Tamiko Yoshida
    • 1
  • Ai Saita
    • 1
  • Mari Yakabe
    • 4
  • Kanae Nii
    • 4
  1. 1.Diagnostic Imaging CenterKameda Kyobashi ClinicTokyoJapan
  2. 2.Department of Diagnostic Radiology and OncologyTokyo Medical and Dental University, Graduate School of MedicineTokyoJapan
  3. 3.Breast CenterKameda Medical CenterKamogawa CityJapan
  4. 4.Philips Electronics Japan, Ltd.TokyoJapan

Personalised recommendations