Advertisement

Japanese Journal of Radiology

, Volume 32, Issue 2, pp 98–104 | Cite as

Diffusional kurtosis imaging analysis in patients with hypertension

  • Keigo ShimojiEmail author
  • Takanori Uka
  • Yoshifumi Tamura
  • Mariko Yoshida
  • Koji Kamagata
  • Masaaki Hori
  • Yumiko Motoi
  • Hirotaka Watada
  • Ryuzo Kawamori
  • Shigeki Aoki
Original Article

Abstract

Purpose

Hypertension is associated with substantial morbidity in Japan. The aim of this work was to evaluate whether hypertension is associated with white matter microstructural changes by using diffusional kurtosis imaging (DKI).

Methods

We explored the regional patterns of white matter alteration in 15 hypertensive middle-aged male participants and 11 normotensive controls by using DKI-based whole-brain analysis. In addition, we investigated whether the observed white matter microstructural changes were related to systolic or diastolic blood pressure by using Pearson’s correlation coefficient analysis.

Results

Mean diffusional kurtosis (MDK) values were significantly higher in hypertensive participants than in normotensive participants (P < 0.05; family-wise error correction for multiple comparisons), indicating widespread microstructural changes in white matter. Moreover, we noted a statistically significant positive correlation between systolic and diastolic blood pressure and MDK values of the whole brain.

Conclusion

Our study suggests that microstructural white matter changes occur in middle-aged men with hypertension, even before the onset of cerebrovascular disease. Thus, DKI might be used as a screening tool for risk of cerebrovascular disease. This highlights the need to further elucidate the relationship between hypertension and DKI of the brain.

Keywords

Hypertension Cerebrum Diffusional kurtosis imaging 

Notes

Acknowledgments

This study was supported in part by a High Technology Research Center Grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT). The research was also supported in part by a MEXT Grant-in-Aid for Scientific Research on Innovative Areas (Comprehensive Brain Science Network), and by a MEXT KAKENHI Grant (Number 25861126).

References

  1. 1.
    Sliwa K, Stewart S, Gersh BJ. Hypertension: a global perspective. Circulation. 2011;123(24):2892–6. doi: 10.1161/circulationaha.110.992362.PubMedCrossRefGoogle Scholar
  2. 2.
    Maclullich AM, Ferguson KJ, Reid LM, Deary IJ, Starr JM, Seckl JR, et al. Higher systolic blood pressure is associated with increased water diffusivity in normal-appearing white matter. Stroke. 2009;40(12):3869–71. doi: 10.1161/STROKEAHA.109.547877.PubMedCrossRefGoogle Scholar
  3. 3.
    Gons RA, de Laat KF, van Norden AG, van Oudheusden LJ, van Uden IW, Norris DG, et al. Hypertension and cerebral diffusion tensor imaging in small vessel disease. Stroke. 2010;41(12):2801–6. doi: 10.1161/STROKEAHA.110.597237.PubMedCrossRefGoogle Scholar
  4. 4.
    Gons RA, van Oudheusden LJ, de Laat KF, van Norden AG, van Uden IW, Norris DG, et al. Hypertension is related to the microstructure of the corpus callosum: the RUN DMC Study. J Alzheimers Dis. 2012. doi: 10.3233/jad-2012-121006.PubMedGoogle Scholar
  5. 5.
    Maillard P, Seshadri S, Beiser A, Himali JJ, Au R, Fletcher E, et al. Effects of systolic blood pressure on white-matter integrity in young adults in the Framingham Heart Study: a cross-sectional study. Lancet Neurol. 2012;11(12):1039–47. doi: 10.1016/s1474-4422(12)70241-7.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53(6):1432–40. doi: 10.1002/mrm.20508.PubMedCrossRefGoogle Scholar
  7. 7.
    Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010;23(7):698–710. doi: 10.1002/nbm.1518.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Grossman EJ, Jensen JH, Babb JS, Chen Q, Tabesh A, Fieremans E, et al. Cognitive impairment in mild traumatic brain injury: a longitudinal diffusional kurtosis and perfusion imaging study. AJNR Am J Neuroradiol. 2012. doi: 10.3174/ajnr.A3358.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Hori M, Fukunaga I, Masutani Y, Taoka T, Kamagata K, Suzuki Y, et al. Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci. 2012;11(4):221–33 doi.PubMedCrossRefGoogle Scholar
  10. 10.
    Yoshida M, Hori M, Yokoyama K, Fukunaga I, Suzuki M, Kamagata K, et al. Diffusional kurtosis imaging of normal-appearing white matter in multiple sclerosis: preliminary clinical experience. Jpn J Radiol. 2013;31(1):50–5. doi: 10.1007/s11604-012-0147-7.PubMedCrossRefGoogle Scholar
  11. 11.
    Nakanishi A, Fukunaga I, Hori M, Masutani Y, Takaaki H, Miyajima M, et al. Microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging. Neuroradiology. 2013. doi: 10.1007/s00234-013-1201-6.PubMedCentralGoogle Scholar
  12. 12.
    Kamagata K, Tomiyama H, Motoi Y, Kano M, Abe O, Ito K, et al. Diffusional kurtosis imaging of cingulate fibers in Parkinson disease: Comparison with conventional diffusion tensor imaging. Magn Reson Imaging. 2013. doi: 10.1016/j.mri.2013.06.009.PubMedGoogle Scholar
  13. 13.
    Imai Y, Kario K, Shimada K, Kawano Y, Hasebe N, Matsuura H, et al. The Japanese Society of hypertension guidelines for self-monitoring of blood pressure at home (Second Edition). Hypertens Res. 2012;35(8):777–95. doi: 10.1038/hr.2012.56.PubMedCrossRefGoogle Scholar
  14. 14.
    Lu H, Jensen JH, Ramani A, Helpern JA. Three-dimensional characterization of non-Gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed. 2006;19(2):236–47. doi: 10.1002/nbm.1020.PubMedCrossRefGoogle Scholar
  15. 15.
    Hori M, Aoki S, Fukunaga I, Suzuki Y, Masutani Y. A new diffusion metric, diffusion kurtosis imaging, used in the serial examination of a patient with stroke. Acta Radiol Short Rep. 2012;1(1). doi: 10.1258/arsr.2011.110024.
  16. 16.
    Sala M, de Roos A, Berg AV, Altmann-Schneider I, Slagboom PE, Westendorp RG, et al. Microstructural brain tissue damage in metabolic syndrome. Diabetes Care. 2013. doi: 10.2337/dc13-1160.Google Scholar

Copyright information

© Japan Radiological Society 2014

Authors and Affiliations

  • Keigo Shimoji
    • 1
    • 2
    Email author
  • Takanori Uka
    • 3
  • Yoshifumi Tamura
    • 4
    • 5
  • Mariko Yoshida
    • 2
  • Koji Kamagata
    • 2
  • Masaaki Hori
    • 2
  • Yumiko Motoi
    • 6
  • Hirotaka Watada
    • 4
    • 5
  • Ryuzo Kawamori
    • 4
    • 5
  • Shigeki Aoki
    • 2
  1. 1.Department of RadiologyNational Center of Neurology and Psychiatry HospitalTokyoJapan
  2. 2.Department of RadiologyJuntendo University Graduate School of MedicineTokyoJapan
  3. 3.Department of NeurophysiologyJuntendo University Graduate School of MedicineTokyoJapan
  4. 4.Department of Medicine, Metabolism, and EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
  5. 5.Sportology Center, Juntendo University Graduate School of MedicineTokyoJapan
  6. 6.Department of Diagnosis, Prevention and Treatment of DementiaJuntendo University Graduate School of MedicineTokyoJapan

Personalised recommendations