Japanese Journal of Radiology

, Volume 29, Issue 6, pp 413–422 | Cite as

Comparison of diagnostic and prognostic capabilities of 18F-FDG-PET/CT, 131I-scintigraphy, and diffusion-weighted magnetic resonance imaging for postoperative thyroid cancer

  • Shigeki Nagamachi
  • Hideyuki Wakamatsu
  • Shogo Kiyohara
  • Ryuichi Nishii
  • Youichi Mizutani
  • Seigo Fujita
  • Shigemi Futami
  • Hideo Arita
  • Masaomi Kuroki
  • Hiroshi Nakada
  • Noriko Uchino
  • Shozo Tamura
  • Keiichi Kawai
Original Article



The first aim of this study was to compare the detectability of metastasis of postoperative differentiated thyroid cancer (DTC) among 131I whole body scintigraphy (IWBS), fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT), and diffusion-weighted magnetic resonance imaging (DWI). The second aim was to clarify the association between the image pattern and prognosis.

Materials and methods

We evaluated 70 postoperative DTC patients on both a patient basis and an organ basis (lymph nodes, lung, bone), and we analyzed the correlation between the image pattern and the prognosis.


For the patient-basis analysis, the detectability by IWBS, PET/CT, and DWI was 67.1%, 84.2%, and 57.6%, respectively. IWBS provided complementary information to that provided by PET/CT in 11 of 70 (15.7%) cases. For the organ-basis analysis, IWBS was the best detector for lymph node metastasis (72.4%). PET/CT was superior to IWBS for detecting metastasis of bone (85.7% vs. 71.4%) and lung (94.1% vs. 62.7%). For the correlation analysis, PET and DWI positivity were the factors predicting a poor prognosis.


PET/CT was the best modality for detecting metastases in postoperative DTC patients, although IWBS provided complementary information. Because PET/CT and DWI gave similar information (e.g., positivity) suggesting poor prognoses, the combination of IWBS and DWI might be the method of choice for monitoring postoperative DTC.

Key words

131I whole-body scintigraphy DWI DTC 18F-FDG-PET/CT Prognosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoh CK, Schiepers C, Seltzer MA, Gambhir SS, Silverman DH, Czernin J, et al. PET in oncology: will it replace the other modalities? Semin Nucl Med 1997;27:94–106.PubMedCrossRefGoogle Scholar
  2. 2.
    Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 2008;49:480–508.PubMedCrossRefGoogle Scholar
  3. 3.
    Grunwald F, Schomburg A, Bender H, Klemm E, Menzel C, Bultmann T, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1996;23:312–319.PubMedCrossRefGoogle Scholar
  4. 4.
    Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997;24:1342–1348.PubMedCrossRefGoogle Scholar
  5. 5.
    Feine U, Lietzenmayer R, Hanke JP, Held J, Wohrle H, Muller-Schauenburg W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996;37:1468–1472.PubMedGoogle Scholar
  6. 6.
    Grunwald F, Menzel C, Bender H, Palmedo H, Willkomm P, Ruhlmann J, et al. Comparison of 18FDG-PET with 131iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid 1997;7:327–335.PubMedCrossRefGoogle Scholar
  7. 7.
    Zoller M, Kohlfuerst S, Igerc I, Kresnik E, Gallowitsch HJ, Gomez I, et al. Combined PET/CT in the follow-up of differentiated thyroid carcinoma: what is the impact of each modality? Eur J Nucl Med Mol Imaging 2007;34:487–495.PubMedCrossRefGoogle Scholar
  8. 8.
    Robbins RJ, Larson SM. The value of positron emission tomography (PET) in the management of patients with thyroid cancer. Best Pract Res Clin Endocrinol Metab 2008;22:1047–1059.PubMedCrossRefGoogle Scholar
  9. 9.
    Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H. Follow-up of differentiated thyroid cancer: what is the value of FDG and sestamibi in the diagnostic algorithm? Nuklearmedizin 1998;37:12–17.PubMedGoogle Scholar
  10. 10.
    Shiga T, Tsukamoto E, Nakada K, Morita K, Kato T, Mabuchi M, et al. Comparison of (18)F-FDG, (131)I-Na, and (201)Tl in diagnosis of recurrent or metastatic thyroid carcinoma. J Nucl Med 2001;42:414–419.PubMedGoogle Scholar
  11. 11.
    Pace L, Nicolai E, Klain M, Salvatore M. Diagnostic value of FDG PET/CT imaging. Q J Nucl Med Mol Imaging 2009;53:503–512.PubMedGoogle Scholar
  12. 12.
    Razfar A, Branstetter BF, Christopoulos A, Lebeau SO, Hodak SP, Heron DE, et al. Clinical usefulness of positron emission tomography-computed tomography in recurrent thyroid carcinoma. Arch Otolaryngol Head Neck Surg 2010;136:120–125.PubMedCrossRefGoogle Scholar
  13. 13.
    Takano A, Oriuchi N, Tsushima Y, Taketomi-Takahashi A, Nakajima T, Arisaka Y, et al. Detection of metastatic lesions from malignant pheochromocytoma and paraganglioma with diffusion-weighted magnetic resonance imaging: comparison with 18F-FDG positron emission tomography and 123I-MIBG scintigraphy. Ann Nucl Med 2008;22:395–401.PubMedCrossRefGoogle Scholar
  14. 14.
    Nakanishi K, Kobayashi M, Nakaguchi K, Kyakuno M, Hashimoto N, Onishi H, et al. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 2007;6:147–155.PubMedCrossRefGoogle Scholar
  15. 15.
    Vilanova JC, Barcelo J. Diffusion-weighted whole-body MR screening. Eur J Radiol 2008;67:440–447.PubMedCrossRefGoogle Scholar
  16. 16.
    Bohlscheid A, Nuss D, Lieser S, Busch HP. Tumor search with diffusion-weighted imaging: first experience. Rofo 2008;180:302–309 (in German).PubMedGoogle Scholar
  17. 17.
    Choi JA, Kang EY, Kim HK, Song IC, Kim YI, Kang HS. Evolution of VX2 carcinoma in rabbit tibia: magnetic resonance imaging with pathologic correlation. Clin Imaging 2008;32:128–135.PubMedCrossRefGoogle Scholar
  18. 18.
    Baur A, Dietrich O, Reiser M. Diffusion-weighted imaging of bone marrow: current status. Eur Radiol 2003;13:1699–1708.PubMedCrossRefGoogle Scholar
  19. 19.
    Bozgeyik Z, Coskun S, Dagli AF, Ozkan Y, Sahpaz F, Ogur E. Diffusion-weighted MR imaging of thyroid nodules. Neuroradiology 2009;51:193–198.PubMedCrossRefGoogle Scholar
  20. 20.
    Mori T, Nomori H, Ikeda K, Kawanaka K, Shiraishi S, Katahira K, et al. Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J Thorac Oncol 2008;3:358–364.PubMedCrossRefGoogle Scholar
  21. 21.
    Toubert ME, Hindie E, Rampin L, Al-Nahhas A, Rubello D. Distant metastases of differentiated thyroid cancer: diagnosis, treatment and outcome. Nucl Med Rev Cent East Eur 2007;10:106–109.PubMedGoogle Scholar
  22. 22.
    Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006;91:498–505.PubMedCrossRefGoogle Scholar
  23. 23.
    Hung GU, Lee KW, Liao PY, Yang LH, Yang KT. The influence of I-131 therapy on FDG uptake in differentiated thyroid cancer. Ann Nucl Med 2008;22:481–485.PubMedCrossRefGoogle Scholar
  24. 24.
    Nagamachi S, Jinnouchi S, Nishii R, Ishida Y, Fujita S, Futami S, et al. Cerebral blood flow abnormalities induced by transient hypothyroidism after thyroidectomy: analysis by Tc-99m-HMPAO and SPM96. Ann Nucl Med 2004;18:469–477.PubMedCrossRefGoogle Scholar
  25. 25.
    Eustatia-Rutten CF, Smit JW, Romijn JA, van der Kleij-Corssmit EP, Pereira AM, Stokkel MP, et al. Diagnostic value of serum thyroglobulin measurements in the follow-up of differentiated thyroid carcinoma, a structured meta-analysis. Clin Endocrinol (Oxf) 2004;61:61–74.CrossRefGoogle Scholar
  26. 26.
    Schlumberger M, Baudin E. Serum thyroglobulin determination in the follow-up of patients with differentiated thyroid carcinoma. Eur J Endocrinol 1998;138:249–252.PubMedCrossRefGoogle Scholar
  27. 27.
    Palmedo H, Bucerius J, Joe A, Strunk H, Hortling N, Meyka S, et al. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 2006;47:616–624.PubMedGoogle Scholar
  28. 28.
    Freudenberg LS, Frilling A, Kuhl H, Muller SP, Jentzen W, Bockisch A, et al. Dual-modality FDG-PET/CT in follow-up of patients with recurrent iodine-negative differentiated thyroid cancer. Eur Radiol 2007;17:3139–3147.PubMedCrossRefGoogle Scholar
  29. 29.
    Finkelstein SE, Grigsby PW, Siegel BA, Dehdashti F, Moley JF, Hall BL. Combined [18F]fluorodeoxyglucose positron emission tomography and computed tomography (FDG-PET/CT) for detection of recurrent, 131I-negative thyroid cancer. Ann Surg Oncol 2008;15:286–292.PubMedCrossRefGoogle Scholar
  30. 30.
    Nanni C, Rubello D, Fanti S, Farsad M, Ambrosini V, Rampin L, et al. Role of 18F-FDG-PET and PET/CT imaging in thyroid cancer. Biomed Pharmacother 2006;60:409–413.PubMedCrossRefGoogle Scholar
  31. 31.
    Buhmann Kirchhoff S, Becker C, Duerr HR, Reiser M, Baur-Melnyk A. Detection of osseous metastases of the spine: comparison of high resolution multi-detector-CT with MRI. Eur J Radiol 2009;69:567–573.PubMedCrossRefGoogle Scholar
  32. 32.
    Grebe SK, Hay ID. Thyroid cancer nodal metastases: biologic significance and therapeutic considerations. Surg Oncol Clin N Am 1996;5:43–63.PubMedGoogle Scholar
  33. 33.
    Schlumberger MJ. Papillary and follicular thyroid carcinoma. N Engl J Med 1998;338:297–306.PubMedCrossRefGoogle Scholar
  34. 34.
    Matoba M, Tonami H, Kondou T, Yokota H, Higashi K, Toga H, et al. Lung carcinoma: diffusion-weighted MR imaging: preliminary evaluation with apparent diffusion coefficient. Radiology 2007;243:570–577.PubMedCrossRefGoogle Scholar
  35. 35.
    Hasegawa I, Boiselle PM, Kuwabara K, Sawafuji M, Sugiura H. Mediastinal lymph nodes in patients with non-small cell lung cancer: preliminary experience with diffusion-weighted MR imaging. J Thorac Imaging 2008;23:157–161.PubMedCrossRefGoogle Scholar
  36. 36.
    Heusner TA, Kuemmel S, Koeninger A, Hamami ME, Hahn S, Quinsten A, et al. Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging. Eur J Nucl Med Mol Imaging 2010;37:1077–1086.PubMedCrossRefGoogle Scholar
  37. 37.
    Satoh S, Kitazume Y, Ohdama S, Kimula Y, Taura S, Endo Y. Can malignant and benign pulmonary nodules be differentiated with diffusion-weighted MRI? AJR Am J Roentgenol 2008;191:464–470.PubMedCrossRefGoogle Scholar
  38. 38.
    Rong R, Zhang CY, Wang XY. Normal appearance of large field diffusion weighted imaging on 3.0 T MRI. Chin Med Sci J 2008;23:158–161.PubMedCrossRefGoogle Scholar
  39. 39.
    Horie T, Takahara T, Ogino T, Okuaki T, Honda M, Okumura Y, et al. Trial of artifact reduction in body diffusion weighted imaging development and basic examination of “TRacking Only Navigator”(TRON method). Nippon Hoshasen Gijutsu Gakkai Zasshi 2008;64:1157–1166 (in Japanese)PubMedGoogle Scholar
  40. 40.
    Kim CK, Park BK, Han JJ, Kang TW, Lee HM. Diffusionweighted imaging of the prostate at 3 T for differentiation of malignant and benign tissue in transition and peripheral zones: preliminary results. J Comput Assist Tomogr 2007;31:449–454.PubMedCrossRefGoogle Scholar
  41. 41.
    Are C, Hsu JF, Ghossein RA, Schoder H, Shah JP, Shaha AR. Histological aggressiveness of fluorodeoxyglucose positronemission tomogram (FDG-PET)-detected incidental thyroid carcinomas. Ann Surg Oncol 2007;14:3210–3215.PubMedCrossRefGoogle Scholar
  42. 42.
    Rivera M, Ghossein RA, Schoder H, Gomez D, Larson SM, Tuttle RM. Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer 2008;113:48–56.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang W, Larson SM, Fazzari M, Tickoo SK, Kolbert K, Sgouros G, et al. Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab 2000;85:1107–1113.PubMedCrossRefGoogle Scholar
  44. 44.
    Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 1982;32:1323–1329.PubMedGoogle Scholar
  45. 45.
    Uematsu H, Sadato N, Ohtsubo T, Tsuchida T, Nakamura S, Sugimoto K, et al. Fluorine-18-fluorodeoxyglucose PET versus thallium-201 scintigraphy evaluation of thyroid tumors. J Nucl Med 1998;39:453–459.PubMedGoogle Scholar
  46. 46.
    Joensuu H, Ahonen A. Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 1987;28:910–914.PubMedGoogle Scholar
  47. 47.
    Watanabe K, Nomori H, Ohtsuka T, Naruke T, Ebihara A, Orikasa H, et al. [F-18]Fluorodeoxyglucose positron emission tomography can predict pathological tumor stage and proliferative activity determined by Ki-67 in clinical stage IA lung adenocarcinomas. Jpn J Clin Oncol 2006;36:403–409.PubMedCrossRefGoogle Scholar
  48. 48.
    Mian C, Barollo S, Pennelli G, Pavan N, Rugge M, Pelizzo MR, et al. Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. Clin Endocrinol (Oxf) 2008;68:108–116.CrossRefGoogle Scholar
  49. 49.
    Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 2009;69:4885–4893.PubMedCrossRefGoogle Scholar
  50. 50.
    Aygun N. Imaging of recurrent thyroid cancer. Otolaryngol Clin North Am 2008;41:1095–1106.PubMedCrossRefGoogle Scholar

Copyright information

© Japan Radiological Society 2011

Authors and Affiliations

  • Shigeki Nagamachi
    • 1
  • Hideyuki Wakamatsu
    • 1
  • Shogo Kiyohara
    • 1
  • Ryuichi Nishii
    • 1
  • Youichi Mizutani
    • 1
  • Seigo Fujita
    • 1
  • Shigemi Futami
    • 1
  • Hideo Arita
    • 1
  • Masaomi Kuroki
    • 1
  • Hiroshi Nakada
    • 1
  • Noriko Uchino
    • 1
  • Shozo Tamura
    • 1
  • Keiichi Kawai
    • 2
  1. 1.Department of Radiology, School of MedicineMiyazaki UniversityMiyazakiJapan
  2. 2.Faculty of Health Science, School of MedicineKanazawa UniversityKanazawaJapan

Personalised recommendations