Japanese Journal of Radiology

, Volume 28, Issue 2, pp 173–179 | Cite as

Selection of endogenous 13C substrates for observation of intracellular metabolism using the dynamic nuclear polarization technique

  • Masafumi Harada
  • Hitoshi Kubo
  • Takamasa Abe
  • Hiroshi Maezawa
  • Hideki Otsuka
Technical Note



The aim of this study was to select a suitable substrate candidate for dynamic nuclear polarization (DNP) studies and demonstrate its utility for evaluating intracellular metabolism.

Materials and methods

Hyperpolarized substances included 1-13C-pyruvate (Pyr), 1-13C-glucose (Glc), and 1-13C-acetate. A DNP polarizer and a 600-MHz vertical small-bore scanner were used for 13C-MR spectroscopic measurements. After polarization for 1 h, the dissolved solution was injected via a capillary line into the nuclear magnetic resonance tube in the scanner. The sequential spectra of the hyperpolarized 13C-labeled substrates were acquired in durations of more than 120 s, and a thermal spectrum was obtained more than 1 h thereafter. FM3A cancer cells of mammary tumors were cultured for intracellular detection of the hyperpolarized 13C-substances.


The greatest sensitivity was found using Pyr with the longest T1 decay (51.5 s); and remarkably, the least sensitivity was observed using Glc with a signal decay of less than 2 s. An effective increase in sensitivity was shown using the other substances. The hyperpolarized intracellular study using 13C-Pyr showed distinct elevation of lactate levels.


The DNP technique is useful for evaluating intracellular metabolism. However, Glc is not suitable for use with the DNP technique.

Key words

13C-MRS DNP Pyruvate Glucose Tumor cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morris P, Bachelard H. Reflections on the application of 13C-MRS to research on brain metabolism. NMR Biomed 2003;16:30–12.CrossRefGoogle Scholar
  2. 2.
    Hancuso A, Zhu A, Beardsley NJ, Glickson JD, Wehrii S, Pickup S. Artificial tumor model suitable for monitoring 31P and 13C NMR spectroscopic changes during chemotherapy-induced apoptosis in human glioma cells. Magn Reson Med 2005;54:67–78.CrossRefGoogle Scholar
  3. 3.
    Brennan L, Hewage C, Malthouse JP, McBean GJ. Gliotoxins disrupt alanine metabolism and glutathione production in C6 glioma cells: a 13C NMR spectroscopic study. Neurochem Int 2004;45:1155–1165.CrossRefPubMedGoogle Scholar
  4. 4.
    Sonnewald U, Kondziella D. Neuronal glial interaction in different neurological diseases studied by ex vivo 13C NMR spectroscopy. NMR Biomed 2003;16:424–429.CrossRefPubMedGoogle Scholar
  5. 5.
    Ross B, Lin A, Harris K, Bhattacharya P, Schweinsburg B. Clinical experience with 13C MRS in vivo. NMR Biomed 2003;16:358–369.CrossRefPubMedGoogle Scholar
  6. 6.
    De Graaf RA, Mason GF, Patel AB, Behar KL, Rothman DL. In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism. NMR Biomed 2003;16:339–357.CrossRefPubMedGoogle Scholar
  7. 7.
    Gruetter R, Adriany G, Choi IY, Henry PG, Lei H, Oz G. Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 2003;16:313–338.CrossRefPubMedGoogle Scholar
  8. 8.
    Ardenkjar-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 2003;100:10158–10163.CrossRefGoogle Scholar
  9. 9.
    Day IJ, Mitchell JC, Snowden MJ, Davis AL. Applications of DNP-NMR for the measurement of heteronuclear T1 relaxation times. J Magn Reson 2007;187:216–224.CrossRefPubMedGoogle Scholar
  10. 10.
    Day SE, Kettunen MI, Gallagher FA, Hu DE, Lerche M, Wolber J, et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 2007;13:1382–1387.CrossRefPubMedGoogle Scholar
  11. 11.
    Golman K, Zandt RI, Lerche M, Pehrson R, Adrenkajaer-Larsen JH. Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 2008;66:10855–10860.CrossRefGoogle Scholar
  12. 12.
    Gallagher FA, Kettunen MI, Day SE, Lerche M, Brindle KM. 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med 2008;60:253–257.CrossRefPubMedGoogle Scholar
  13. 13.
    Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 2005;65:613–621.CrossRefPubMedGoogle Scholar
  14. 14.
    Olsson LE, Chai CM, Axelsson O, Karlsson M, Golman K, Petersson JS. MR coronary angiography in pigs with intraarterial injections of hyperpolarized 13C substances. Magn Reson Med 2006;55:731–737.CrossRefPubMedGoogle Scholar
  15. 15.
    Golman K, Petersson JS, Magnusson P, Johansson E, Akeson P, Chai CM, et al. Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI. Magn Reson Med 2008;59:1005–1013.CrossRefPubMedGoogle Scholar
  16. 16.
    Kurhanewicz J, Bok R, Nelson SJ, Vigneron DB. Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med 2008;49:341–344.CrossRefPubMedGoogle Scholar
  17. 17.
    Golman K, Olsson LE, Axelsson O, Mansson S, Karlsson M, Petersson JS. Molecular imaging using hyperpolarized 13C. Br J Radiol 2003;76:118–127.CrossRefGoogle Scholar
  18. 18.
    Golman K, Zandt RI, Thaning M. Real time metabolic imaging. Proc Natl Acad Sci U S A 2006;103:11270–11275.CrossRefPubMedGoogle Scholar
  19. 19.
    Golman K, Ardenkjar-Larsen JH, Petersson JS, Mansson S, Leunbach LB. Molecular imaging with endogenous substances. Proc Natl Acad Sci U S A 2003;100:10435–10439.CrossRefPubMedGoogle Scholar

Copyright information

© Japan Radiological Society 2010

Authors and Affiliations

  • Masafumi Harada
    • 1
  • Hitoshi Kubo
    • 1
  • Takamasa Abe
    • 2
  • Hiroshi Maezawa
    • 3
  • Hideki Otsuka
    • 4
  1. 1.Department of Medical Imaging, Institute of Health BiosciencesUniversity of Tokushima Graduate SchoolTokushimaJapan
  2. 2.MRI/Biotools DivisionOxford Instruments KKTokyoJapan
  3. 3.Department of Radiation Physics, Engineering, and Biology, Institute of Health BiosciencesUniversity of Tokushima Graduate SchoolTokushimaJapan
  4. 4.Department of Radiology, Institute of Health BiosciencesUniversity of TokushimaTokushimaJapan

Personalised recommendations