Radiation Medicine

, Volume 25, Issue 8, pp 417–425 | Cite as

Inhibition of repair of radiation-induced damage by mild temperature hyperthermia, referring to the effect on quiescent cell populations

  • Shin-ichiro Masunaga
  • Kenji Nagata
  • Minoru Suzuki
  • Genro Kashino
  • Yuko Kinashi
  • Koji Ono
ORIGINAL ARTICLE

Abstract

Purpose

We evaluated the usefulness of mild temperature hyperthermia (MTH) as an inhibitor of the repair of radiation-induced damage in terms of the responses of the total [= proliferating (P) + quiescent (Q)] and Q cell populations in solid tumors in vivo.

Materials and methods

SCC VII tumor-bearing mice received a continuous administration of 5-bromo-2′-deoxyuridine (BrdU) to label all P cells. They then underwent high-dose-rate (HDR) γ-ray irradiation immediately followed by MTH or administration of caffeine or wortmannin; alternatively, they underwent reduced-dose rate γ-ray irradiation simultaneously with MTH or administration of caffeine or wortmannin. Nine hours after the start of irradiation, the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (= Q cells) was determined using immunofluorescence staining for BrdU. The MN frequency in the total tumor cell population was determined using tumors that were not pretreated with BrdU.

Results

In both the total and Q-cell populations, especially the latter, MTH efficiently suppressed the reduction in sensitivity caused by leaving an interval between HDR irradiation and the assay and decreasing the irradiation dose rate, as well as the combination with wortmannin administration.

Conclusion

From the viewpoint of solid tumor control as a whole, including intratumor Q-cell control, MTH is useful for suppressing the repair of both potentially lethal and sublethal damage.

Key words

Mild temperature hyperthermia Potentially lethal damage Sublethal damage Dose rate effect Quiescent cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hall, EJ, Roizin-Towle, L 1984Biological effects of heatCancer Res444708s13sPubMedGoogle Scholar
  2. 2.
    Sapareto, SA, Dewey, WC 1984Thermal dose determination in cancer therapyInt J Radiat Oncol Biol Phys10787800PubMedGoogle Scholar
  3. 3.
    Oleson, JR, Samulski, TV, Leopold, KA, Clegg, ST, Dewhirst, MW, Dodge, RK,  et al. 1993Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatmentInt J Radiat Oncol Biol Phys2528997PubMedGoogle Scholar
  4. 4.
    Song, CW, Park, HJ, Lee, CK, Griffin, R 2005Implications of increased tumour blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatmentInt J Hyperthermia21761767PubMedCrossRefGoogle Scholar
  5. 5.
    Armour, EP, Raaphorst, GP 2004Long duration mild temperature hyperthermia and brachytherapyInt J Hyperthermia2017589PubMedCrossRefGoogle Scholar
  6. 6.
    Kong, G, Braun, RD, Dewhirst, MW 2000Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle sizeCancer Res6044405PubMedGoogle Scholar
  7. 7.
    Li, CY, Dewhirst, MW 2002Hyperthermia-regulated immunogene therapyInt J Hyperthermia1858696PubMedCrossRefGoogle Scholar
  8. 8.
    Kinuya, S, Yokoyama, K, Michigishi, T, Tonami, N 2004Optimization of radioimmunotherapy interactions with hyperthermiaInt J Hyperthermia20190200PubMedCrossRefGoogle Scholar
  9. 9.
    Vaupel, P 2004Tumor microenvironmental physiology and its implications for radiation oncologySemin Radiat Oncol14197275CrossRefGoogle Scholar
  10. 10.
    Masunaga, S, Ono, K 2002Significance of the response of quiescent cell populations within solid tumors in cancer therapyJ Radiat Res431125PubMedCrossRefGoogle Scholar
  11. 11.
    Masunaga, S, Ono, K, Suzuki, M, Nishimura, Y, Kinashi, Y, Takagaki, M,  et al. 2001Radiosensitization effect by combination with paclitaxel in vivo including the effect on intratumor quiescent cellsInt J Radiat Oncol Biol Phys50106372PubMedCrossRefGoogle Scholar
  12. 12.
    International Commission on Radiation Units and Measurements1997ICRU Report 58. Dose and volume specification for reporting interstitial therapyICRUBethesda, MDGoogle Scholar
  13. 13.
    Nishimura, Y, Ono, K, Hiraoka, M, Masunaga, S, Jo, S, Shibamoto, Y,  et al. 1990Treatment of murine SCC VII tumors with localized hyperthermia and temperature-sensitive liposomes containing cisplatinRadiat Res1221617PubMedCrossRefGoogle Scholar
  14. 14.
    Hoekstra, MF 1997Responses to DNA damage and regulation of cell cycle checkpoints by the ATM protein kinase familyCurr Opin Genet Dev71705PubMedCrossRefGoogle Scholar
  15. 15.
    Boehm, L, Roos, WP, Serafin, AM 2003Inhibition of DNA repair by pentoxifyline and related methylxanthine derivativesToxicology19315360CrossRefGoogle Scholar
  16. 16.
    Jones, EL, Oleson, JR, Prosnitz, LR, Samulski, TV, Vujaskovic, Z, Yu, D,  et al. 2005Randomized trial of hyperthermia and radiation for superficial tumorsJ Clin Oncol13307985CrossRefGoogle Scholar
  17. 17.
    Karran, P 2000DNA double strand break repair in mammalian cellsCurr Opin Genet Dev1014450PubMedCrossRefGoogle Scholar
  18. 18.
    Hashimoto, M, Rao, S, Tokuno, O, Yamamoto, K, Takata, M, Takeda, S,  et al. 2003DNA-PK: the major target for wortmannin-mediated radiosensitization by the inhibition of DSB repair via NHEJ pathwayJ Radiat Res441519PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, H, Wang, X, Iliakis, G, Wang, Y 2003Caffeine could not effectively sensitize homologous recombination repair deficient cells to ionizing radiation induced cell killingRadiat Res1594205PubMedCrossRefGoogle Scholar
  20. 20.
    Masunaga, S, Takahashi, A, Ohnishi, K, Ohnishi, T, Suzuki, M, Nagata, K,  et al. 2003Effects of p53 status and wortmannin treatment on potentially lethal damage repair, with emphasis on the response of intratumor quiescent cellsRadiat Med211207PubMedGoogle Scholar
  21. 21.
    Wang, Z, Armour, EP, Corry, PM, Martinez, A 1992Elimination of dose-rate effects by mild hyperthermiaInt J Radiat Oncol Biol Phys2496573PubMedGoogle Scholar
  22. 22.
    Ryu, S, Brown, SL, Kolozsvary, A, Kim, JH 1996Increased tumour response of a murine fibrosarcoma to low temperature hyperthermia and low dose rate brachytherapyInt J Hyperthermia1263543PubMedGoogle Scholar
  23. 23.
    Hall, EL 2006

    Repair of radiation damage and the dose-rate effect

    Hall, EL eds. Radiobiology for the radiologist6th editionLippincott Williams & WilkinsPhiladelphia6084
    Google Scholar
  24. 24.
    Utsumi, H, Tano, K, Takata, M, Takeda, S, Elkind, MM 2001Requirement for repair of DNA double-strand breaks by homologous recombination in split-dose recoveryRadiat Res1556806PubMedCrossRefGoogle Scholar
  25. 25.
    Raaphorst, GP, Maude-Leblanc, J 2004Evaluation of recombination repair pathways in thermal radiosensitizationRadiat Res1612158PubMedCrossRefGoogle Scholar
  26. 26.
    Dethlefsen, LA 1980

    In quest of the quaint quiescent cells

    Meyn, REWithers, HR eds. Radiation biology in cancer researchRaven PressNew York41535
    Google Scholar

Copyright information

© Japan Radiological Society 2007

Authors and Affiliations

  • Shin-ichiro Masunaga
    • 1
  • Kenji Nagata
    • 1
  • Minoru Suzuki
    • 1
  • Genro Kashino
    • 1
  • Yuko Kinashi
    • 2
  • Koji Ono
    • 1
  1. 1.Particle Radiation Oncology Research Center, Research Reactor InstituteKyoto UniversityOsakaJapan
  2. 2.Division of Radiation Safety, Research Reactor InstituteKyoto UniversityOsakaJapan

Personalised recommendations