Advertisement

The added value of spatially distributed meteorological data for simulating hydrological processes in a small Mediterranean catchment

  • Ahlem GaraEmail author
  • Khouloud Gader
  • Slaheddine Khlifi
  • Marnik Vanclooster
  • Donia Jendoubi
  • Christophe Bouvier
Research Article - Hydrology
  • 37 Downloads

Abstract

The purpose of this paper was to demonstrate the added value of the spatial distribution of rainfall and potential evapotranspiration (PE) in the prediction of the discharge for a small Mediterranean catchment located in the Medjerda basin in Tunisia, i.e. the Raghay. We compare therefore the performance of a conceptual hydrological model available in the ATHYS platform, using global and spatial distributed input data. The model was implemented in two different ways. The first implementation was in a spatially distributed mode, and the second one was in a non-distributed lumped mode by using spatially averaged data weighed with a Thiessen-interpolated factor. The performance of the model was analysed for the distributed mode and for the lumped mode with a cross-validation test and through several modelling evaluation criteria. Simultaneously, the impact of the spatial distribution of meteorological data was assessed for the two cases when estimating the model parameters, the flow and water amounts, and the flow duration curves. The cross-validation of the split-sample test shows a preference for the spatially distributed model based on accuracy criteria and graphical comparison. The distributed mode required, however, more simulation time. Finally, the results reported for the Raghay indicated that the added value of the spatial distribution of rainfall and PE is not constant for the whole series of data, depending on the spatial and temporal variability of climate data over the catchment that should be assessed prior to the modelling implementations.

Keywords

Medjerda ATHYS Hydrological modelling Distributed PE and rainfall Accuracy criteria 

Notes

Acknowledgements

This research was realized at the Sustainable Management of Water and Soil Resources (UR17AGR03). The authors received funding from the project ‘Adaptation of water resources management in the Medjerda watershed to the challenges of climate change’ through the project 11—axis 2 of the Wallonia Brussels International Grant No. (Aso/CFo/Tunisie/15.1218/cf) and Tunisia Joint Commission 2016–2018. Moreover, part of this research study was accomplished in the Laboratory of HydroSciences in Montpellier with the funding of mobility program provided by the Ministry of Higher Education and Scientific Research in Tunisia. Authors also would like to thank the Tunisian General Directorate of Water Resources (DGRE) for providing conventional data for the study area. Finally, the authors would like to express their gratitude for the anonymous reviewers of this paper.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Ajami NK, Gupta H, Wagener T, Sorooshian S (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. J Hydrol 298:112–135.  https://doi.org/10.1016/J.JHYDROL.2004.03.033 CrossRefGoogle Scholar
  2. Andréassian V, Oddos A, Michel C, Anctil F, Perrin C, Loumagne C (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall–runoff models: a theoretical study using chimera watersheds. Water Resour Res.  https://doi.org/10.1029/2003WR002854 CrossRefGoogle Scholar
  3. Apip Sayama T, Tachikawa Y, Takara K (2012) Spatial lumping of a distributed rainfall–sediment–runoff model and its effective lumping scale. Hydrol Process 26:855–871.  https://doi.org/10.1002/hyp.8300 CrossRefGoogle Scholar
  4. Bao H, Wang L, Zhang K, Li Z, Wang L (2017) Application of a developed distributed hydrological model based on the mixed runoff generation model and 2D kinematic wave flow routing model for better flood forecasting. Atmos Sci Lett 18:284–293.  https://doi.org/10.1002/asl.754 CrossRefGoogle Scholar
  5. Bargaoui Z, Hamouda D, Houcine A (2008) Modélisation pluie-débit et classification hydroclimatique. Rev des Sci l’eau 21:233–245.  https://doi.org/10.7202/018468ar CrossRefGoogle Scholar
  6. Bentura PLF, Michel C (1997) Flood routing in a wide channel with a quadratic lag-and-route method. Hydrol Sci J 42(2):169–189CrossRefGoogle Scholar
  7. Botter G, Zanardo S, Porporato A, Rodriguez-Iturbe I, Rinaldo A (2008) Ecohydrological model of flow duration curves and annual minima. Water Resour Res.  https://doi.org/10.1029/2008WR006814 CrossRefGoogle Scholar
  8. Bouvier C, Marchandise A, Brunet P, Crespy A (2008) Un modèle pluie-débit distribué événementiel parcimonieux pour la prédétermination et la prévision des crues éclair en zone méditerranéenne. Application au bassin du Gardon d’Anduze. IWRA congress 2008, p 10. https://www.iwra.org/congress/2008/resource/authors/abs811_article.pdf. Accessed 23 June 2018
  9. Bouvier C, Crespy A, L’Aour-Dufour A, Crès FN, Desclaux F, Marchandise A (2013) Distributed hydrological modeling—the ATHYS platform. Modeling software. Wiley, Hoboken, pp 83–100CrossRefGoogle Scholar
  10. Breuer L, Huisman JA, Willems P, Bormann H, Bronstert A, Croke B, Frede H, Gräff T, Hubrechts L, Jakeman A, Kite G, Lanini J, Leavesley G, Lettenmaier D, Lindström G, Seibert J, Sivapalan M, Viney N (2009) Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: model intercomparison with current land use. Adv Water Resour 32:129–146.  https://doi.org/10.1016/j.advwatres.2008.10.003 CrossRefGoogle Scholar
  11. Brocca L, Melone F, Moramarco T, Wagner W, Naeimi V, Bartalis Z, Hasenauer S (2010) Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Earth Syst Sci 145194:1881–1893.  https://doi.org/10.5194/hess-14-1881-2010 CrossRefGoogle Scholar
  12. Brulebois E, Ubertosi M, Castel T, Richard Y, Sauvage S, Sanchez Perez JM, Le Moine N, Amiotte-Suchet P (2018) Robustness and performance of semi-distributed (SWAT) and global (GR4J) hydrological models throughout an observed climatic shift over contrasted French watersheds. Open Water J 5(1):41–56. https://scholarsarchive.byu.edu/openwater/vol5/iss1/4
  13. Castellarin A, Galeati G, Brandimarte L, Montanari A, Brath A (2004) Regional flow-duration curves: reliability for ungauged basins. Adv Water Resour.  https://doi.org/10.1016/j.advwatres.2004.08.005 CrossRefGoogle Scholar
  14. Coustau M, Bouvier C, Borrell-Estupina V, Jourde H (2012) Flood modelling with a distributed event-based parsimonious rainfall–runoff model: case of the karstic Lez river catchment. Nat Hazards Earth Syst Sci 12:1119–1133.  https://doi.org/10.5194/nhess-12-1119-2012 CrossRefGoogle Scholar
  15. Dakhlaoui H, Ruelland D, Tramblay Y, Bargaoui Z (2017) Evaluating the robustness of conceptual rainfall–runoff models under climate variability in northern Tunisia. J Hydrol 550:201–217.  https://doi.org/10.1016/J.JHYDROL.2017.04.032 CrossRefGoogle Scholar
  16. Dile YT, Srinivasan R (2014) Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: an application in the blue nile river basin. J Am Water Resour Assoc 50:1226–1241.  https://doi.org/10.1111/jawr.12182 CrossRefGoogle Scholar
  17. Duan Q, Gupta HV, Sorooshian S, Rousseau A, Turcotte R (2003) Calibration of watershed models. American Geophysical Union, WashingtonCrossRefGoogle Scholar
  18. Fang X, Thompson DB, Cleveland TG et al (2008) Time of concentration estimated using watershed parameters determined by automated and manual methods. J Irrig Drain Eng 134:202–211.  https://doi.org/10.1061/(ASCE)0733-9437(2008)134:2(202) CrossRefGoogle Scholar
  19. Fuka DR, Walter MT, Macalister C, Degaetano A, Steenhuis T, Easton Z (2014) Using the climate forecast system reanalysis as weather input data for watershed models. Hydrol Process.  https://doi.org/10.1002/hyp.10073 CrossRefGoogle Scholar
  20. Gábor A, Villaverde AF, Banga JR (2017) Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems. BMC Syst Biol 11:54.  https://doi.org/10.1186/s12918-017-0428-y CrossRefGoogle Scholar
  21. Gader K, Gara A, Slimani M, Mahjoub MR (2015) Study of spatio-temporal variability of the maximum daily rainfall. In: 2015 6th International conference on modeling, simulation, and applied optimization (ICMSAO). IEEE, pp 1–6Google Scholar
  22. Ganora D, Claps P, Laio F, Viglione A (2009) An approach to estimate nonparametric flow duration curves in ungauged basins. Water Resour Res.  https://doi.org/10.1029/2008WR007472 CrossRefGoogle Scholar
  23. Gara A, Gader K, Bergaoui M, Mahjoub MR (2015) Assessment of the hydrological response of the watershed through a distributed physically-based modeling for extreme events: application in the Raghay catchment (Medjerda) (Northern Tunisia). In: 6th international conference on modeling, simulation, and applied optimization, ICMSAO 2015. IEEE, pp 1–6Google Scholar
  24. Ghorbel A (1976) Etude hydrologique de l’oued Rarai. 26Google Scholar
  25. Hawkins RH (1993) Asymptotic determination of runoff curve numbers from data. J Irrig Drain Eng 119:334–345.  https://doi.org/10.1061/(ASCE)0733-9437(1993)119:2(334) CrossRefGoogle Scholar
  26. Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423.  https://doi.org/10.2307/2529430 CrossRefGoogle Scholar
  27. Ibrahim B, Wisser D, Barry B, Fowe T, Aduna A (2015) Hydrological predictions for small ungauged watersheds in the Sudanian zone of the Volta basin in West Africa. J Hydrol Reg Stud 4:386–397.  https://doi.org/10.1016/J.EJRH.2015.07.007 CrossRefGoogle Scholar
  28. Khakbaz B, Imam B, Hsu K, Sorooshian S (2012) From lumped to distributed via semi-distributed: calibration strategies for semi-distributed hydrologic models. J Hydrol 418–419:61–77.  https://doi.org/10.1016/J.JHYDROL.2009.02.021 CrossRefGoogle Scholar
  29. Klemeš V (1986) Operational testing of hydrological simulation models. Hydrol Sci J.  https://doi.org/10.1080/02626668609491024 CrossRefGoogle Scholar
  30. Koren V, Zhang Z, Zhang Y, Reed SM, Cui Z, Moreda F, Cosgrove BA, Mizukami N, Anderson EA (2012) Results of the DMIP 2 Oklahoma experiments. J Hydrol 418–419:17–48.  https://doi.org/10.1016/J.JHYDROL.2011.08.056 CrossRefGoogle Scholar
  31. Lewis D, Singer MJ, Tate KW (2000) Applicability of SCS curve number method for a California oak woodlands watershed. J Soil Water Conserv 55:226–230Google Scholar
  32. Liu X, Li J (2008) Application of SCS model in estimation of runoff from small watershed in Loess Plateau of China. Chin Geogr Sci 18:235.  https://doi.org/10.1007/s11769-008-0235-x CrossRefGoogle Scholar
  33. Lobligeois F, Andréassian V, Perrin C, Tabary P, Loumagne C (2014) When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events. Hydrol Earth Syst Sci 18:575–594.  https://doi.org/10.5194/hess-18-575-2014 CrossRefGoogle Scholar
  34. Ludwig R, Roson R, Zografos C, Kallis G (2011) Towards an inter-disciplinary research agenda on climate change, water and security in Southern Europe and neighboring countries. Environ Sci Policy.  https://doi.org/10.1016/j.envsci.2011.04.003 CrossRefGoogle Scholar
  35. Mckee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Eighth conference on applied climatology, pp 179–184Google Scholar
  36. Michel C, Andréassian V, Perrin C (2005) Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure? Water Resour Res.  https://doi.org/10.1029/2004wr003191 CrossRefGoogle Scholar
  37. Mishra SK, Singh VP, Sansalone JJ, Aravamuthan V (2003) A Modified SCS-CN Method: characterization and Testing. Water Resour Manag 17:37–68.  https://doi.org/10.1023/A:1023099005944 CrossRefGoogle Scholar
  38. Moriasi DN, Arnold JG, Van Liew MW, Bingner R, Harmel R, Veith T (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900CrossRefGoogle Scholar
  39. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290.  https://doi.org/10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  40. Oudin L, Hervieu F, Michel C, Perrin C, Andréassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J Hydrol 303:290–306.  https://doi.org/10.1016/J.JHYDROL.2004.08.026 CrossRefGoogle Scholar
  41. Oudin L, Andréassian V, Perrin C, Michel C, Le Moine N (2008) Spatial proximity, physical similarity, regression and ungaged catchments: a comparison of regionalization approaches based on 913 French catchments. Water Resour Res.  https://doi.org/10.1029/2007WR006240 CrossRefGoogle Scholar
  42. Pugliese A, Castellarin A, Brath A (2014) Geostatistical prediction of flow-duration curves in an index-flow framework. Hydrol Earth Syst Sci 18:3801–3816.  https://doi.org/10.5194/hess-18-3801-2014 CrossRefGoogle Scholar
  43. Roth V, Lemann T (2016) Comparing CFSR and conventional weather data for discharge and soil loss modelling with SWAT in small catchments in the Ethiopian Highlands. Hydrol Earth Syst Sci 20:921–934.  https://doi.org/10.5194/hess-20-921-2016 CrossRefGoogle Scholar
  44. Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y, Chuang H, Juang H, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds R, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1058.  https://doi.org/10.1175/2010BAMS3001.1 CrossRefGoogle Scholar
  45. Sangati M, Borga M (2009) Influence of rainfall spatial resolution on flash flood modelling. Nat Hazards Earth Syst Sci 9:575–584CrossRefGoogle Scholar
  46. Schuol J, Abbaspour KC, Yang H, Srinivasan R, Zehnder A (2008) Modeling blue and green water availability in Africa. Water Resour Res.  https://doi.org/10.1029/2007WR006609 CrossRefGoogle Scholar
  47. Sellami H, La Jeunesse I, Benabdallah S, Vanclooster M (2013) Parameter and rating curve uncertainty propagation analysis of the SWAT model for two small Mediterranean catchments. Hydrol Sci J.  https://doi.org/10.1080/02626667.2013.837222 CrossRefGoogle Scholar
  48. Sherman J, Morrison WJ (1950) Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann Math Stat 21:124–127CrossRefGoogle Scholar
  49. Singh J, Knapp HV, Demissie M (2005) Hydrologic modeling of the Iroquois river watershed using HSPF and SWAT. J Am Water Resour Assoc 41(2):343–360.  https://doi.org/10.1111/j.1752-1688.2005.tb03740.x CrossRefGoogle Scholar
  50. Tegegne G, Park DK, Kim Y-O (2017) Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. J Hydrol Reg Stud 14:49–66.  https://doi.org/10.1016/J.EJRH.2017.10.002 CrossRefGoogle Scholar
  51. Tolera M, Chung I-M, Chang S (2018) Evaluation of the climate forecast system reanalysis weather data for watershed modeling in Upper Awash Basin. Ethiopia. Water 10:725.  https://doi.org/10.3390/w10060725 CrossRefGoogle Scholar
  52. Tramblay Y, Bouvier C, Ayral P-A, Marchandise A (2011) Impact of rainfall spatial distribution on rainfall–runoff modelling efficiency and initial soil moisture conditions estimation. Nat Hazards Earth Syst Sci 11:157–170.  https://doi.org/10.5194/nhess-11-157-2011 CrossRefGoogle Scholar
  53. Vansteenkiste T, Tavakoli M, Van Steenbergen N, De Smedt F, Batelaan O, Pereira F, Willems P (2014) Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. J Hydrol 511:335–349.  https://doi.org/10.1016/J.JHYDROL.2014.01.050 CrossRefGoogle Scholar
  54. Wöhling T, Samaniego L, Kumar R (2013) Evaluating multiple performance criteria to calibrate the distributed hydrological model of the upper Neckar catchment. Environ Earth Sci 69:453–468.  https://doi.org/10.1007/s12665-013-2306-2 CrossRefGoogle Scholar
  55. Zhang Q, Heiner K, Holmgren K (2013) How well do reanalyses represent the southern African precipitation? Clim Dyn.  https://doi.org/10.1007/s00382-012-1423-z CrossRefGoogle Scholar
  56. Zkhiri W, Tramblay Y, Hanich L et al (2019) Spatiotemporal characterization of current and future droughts in the High Atlas basins (Morocco). Theor Appl Climatol 135:593–605.  https://doi.org/10.1007/s00704-018-2388-6 CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2019

Authors and Affiliations

  1. 1.U-R:Gestion Durable des Ressources en Eau et en Sol (GDRES), High School of Engineering of Medjez el Bab (ESIM)University of JendoubaJendoubaTunisia
  2. 2.National Agronomic Institute of Tunisia (INAT)University of CarthageTunisTunisia
  3. 3.Earth and Life InstituteUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Centre for Development and Environment (CDE)University of BernBernSwitzerland
  5. 5.HydroSciences MontpellierInstitut de Recherche pour le Développement (IRD)MontpellierFrance

Personalised recommendations