Advertisement

Acta Geophysica

, Volume 67, Issue 6, pp 1563–1577 | Cite as

Amplitude anisotropy of shear-wave splitting and fluid detection in thin-layer reservoir

  • Chunying YangEmail author
  • Yun Wang
  • Xiang-yang Li
Research Article - Applied Geophysics
  • 74 Downloads

Abstract

Thin interbeds are typical reservoirs in eastern China. Thin layers and fractures bring huge challenge to fluid identification in anisotropic reservoir. This study focuses on thin-fractured reservoirs and amplitude attributes of shear-wave splitting, and consequently predicted fluid type in fractured reservoir based on the response of fast and slow S-waves to fluids. 3D HTI viscoelastic equation was employed to analyze amplitudes of split S-waves through fluid-filled and fractured media, including oil- and water-saturated synthetic models. Similar to velocity anisotropy, amplitude anisotropy was proposed to avoid the calculation of S-wave quality factor. Amplitude ratio and substation derived from amplitude anisotropy were used to identify fluid type. Example from the Luojia area of Shengli oilfield was used to demonstrate the effectiveness of the inversion method. Results show that amplitude ratio and amplitude subtraction are useful to distinguish fluids, while the former works better than the latter.

Keywords

HTI viscoelastic modeling Shear-wave splitting Amplitude anisotropy Fluid detection 

Notes

Acknowledgements

This work was supported by the National Science and Technology Major Project (Grant No. 2017ZX05005-004-002), Fundamental Research Funds for the Central Universities (Grant No. 2652017415) and National Natural Science Foundation of China (Grant No. 41804132).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alford RM (1986) Shear data in the presence of azimuthal anisotropy: Dilley, Texas. In: SEG technical program expanded abstracts, pp 476–479.  https://doi.org/10.1190/1.1893036
  2. Amalokwu K, Chapman M, Best AI, Sothcott J, Minshull TA, Li XY (2014) Experimental observation of water saturation effects on shear wave splitting in synthetic rock with fractures aligned at oblique angles. Geophys J Int 200(1):17–24.  https://doi.org/10.1093/gji/ggu368 CrossRefGoogle Scholar
  3. Bai T, Tsvankin I (2016) Time-domain finite-difference modeling for attenuative anisotropic media. Geophysics 81(2):C69–C77.  https://doi.org/10.1190/geo2015-0424.1 CrossRefGoogle Scholar
  4. Carcione JM (1990) Wave propagation in anisotropic linear viscoelastic media: theory and simulated wavefields. Geophys J Int 101(3):739–750.  https://doi.org/10.1111/j.1365-246x.1990.tb05580.x CrossRefGoogle Scholar
  5. Carcione JM (1992) Anisotropic Q and velocity dispersion of finely layered media. Geophys Prospect 40(7):761–783.  https://doi.org/10.3997/2214-4609.201410908 CrossRefGoogle Scholar
  6. Carcione JM (1995) Constitutive model and wave equations for linear, viscoelastic, anisotropic media. Geophysics 60(2):537–548.  https://doi.org/10.1190/1.1443791 CrossRefGoogle Scholar
  7. Carcione JM (1999) Staggered mesh for the anisotropic and viscoelastic wave equation. Geophysics 64(6):1863–1866.  https://doi.org/10.1190/1.1444692 CrossRefGoogle Scholar
  8. Carcione JM (2007) Wave fields in real media: wave propagation in anisotropic, anelastic, porous and electromagnetic media, Third edn. Elsevier, AmsterdamGoogle Scholar
  9. Carcione JM, Picotti S, Santos JE (2012) Numerical experiments of fracture-induced velocity and attenuation anisotropy. Geophys J Int 191(3):1179–1191.  https://doi.org/10.1111/j.1365-246x.2012.05697.x CrossRefGoogle Scholar
  10. Chapman M (2003) Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys Prospect 51(5):369–379.  https://doi.org/10.1046/j.1365-2478.2003.00384.x CrossRefGoogle Scholar
  11. Chapman M (2009) Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy. Geophysics 74(6):D97–D103.  https://doi.org/10.1190/1.3204779 CrossRefGoogle Scholar
  12. Crampin S (1985) Evaluation of anisotropy by shear-wave splitting. Geophysics 50(1):142–152.  https://doi.org/10.1111/j.1365-246x.2012.05697.x CrossRefGoogle Scholar
  13. de Figueiredo JJS, Schleicher J, Stewart RR, Dayur N, Omoboya B, Wiley R, William A (2013) Shear wave anisotropy from aligned inclusions: ultrasonic frequency dependence of velocity and attenuation. Geophys J Int 193(1):475–488.  https://doi.org/10.1093/gji/ggs130 CrossRefGoogle Scholar
  14. Delle PC, Sarout J, Madonna C, Saenger EH, Dewhurst DN, Raven M (2014) Frequency-dependent seismic attenuation in shales: experimental results and theoretical analysis. Geophys J Int 198(1):504–515.  https://doi.org/10.1093/gji/ggu148 CrossRefGoogle Scholar
  15. Dupuy B, Stovas A (2013) Influence of frequency and saturation on AVO attributes for patchy saturated rocks. Geophysics 79(1):B19–B36.  https://doi.org/10.1190/geo2012-0518.1 CrossRefGoogle Scholar
  16. Dutta G, Schuster GT (2016) Wave-equation Q tomography. Geophysics 81(6):R471–R484.  https://doi.org/10.1190/geo2016-0081.1 CrossRefGoogle Scholar
  17. Fichtner A, Van DM (2014) Models and Fréchet kernels for frequency-(in)dependent Q. Geophys J Int 198(3):1878–1889.  https://doi.org/10.1093/gji/ggu228 CrossRefGoogle Scholar
  18. Guo P, McMechan GA (2017) Sensitivity of 3D 3C synthetic seismograms to anisotropic attenuation and velocity in reservoir models. Geophysics 82(2):T79–T95.  https://doi.org/10.1190/geo2016-0321.1 CrossRefGoogle Scholar
  19. Hauge PS (1981) Measurements of attenuation from vertical seismic profiles. Geophysics 46(11):1548–1558.  https://doi.org/10.1190/1.1441161 CrossRefGoogle Scholar
  20. Jin Z, Papageorgiou G, Chapman M, Wu X (2016) Frequency-dependent AVO modeling for the estimation of gas saturation in a thin layer. In: SEG technical program expanded abstracts 2016, Society of exploration geophysicists, pp 521–526.  https://doi.org/10.1190/segam2016-13609529.1
  21. Jin Z, Chapman M, Papageorgiou G, Wu X (2018) Impact of frequency-dependent anisotropy on azimuthal P-wave reflections. J Geophys Eng 15(6):2530–2544.  https://doi.org/10.1088/1742-2140/aad882 CrossRefGoogle Scholar
  22. Jones LE, Wang HF (1981) Ultrasonic velocities in Cretaceous shales from the Williston Basin. Geophysics 46(3):288–297.  https://doi.org/10.1016/0148-9062(83)91440-7 CrossRefGoogle Scholar
  23. Korneev VA, Goloshubin GM, Daley TM, Silin DB (2004) Seismic low-frequency effects in monitoring fluid-saturated reservoirs. Geophysics 69(2):522–532.  https://doi.org/10.1190/1.1707072 CrossRefGoogle Scholar
  24. Li XY (1997) Fractured reservoir delineation using multicomponent seismic data. Geophys Prospect 45(1):39–64.  https://doi.org/10.1046/j.1365-2478.1997.3200262.x CrossRefGoogle Scholar
  25. Liu HP, Anderson DL, Kanamori H (1976) Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophys J Int 47(1):41–58.  https://doi.org/10.1111/j.1365-246x.1976.tb01261.x CrossRefGoogle Scholar
  26. Liu E, Crampin S, Queen J, Rizer W (1993) Velocity and attenuation anisotropy caused by microcracks and macrofractures in a multiazimuth reverse VSP. Can J Explor Geophys 29(1): 177–188. http://eap.bgs.ac.uk/PUBLICATIONS/PAPERS/P1993/1993eliusc.pdf
  27. Liu E, Chapman M, Varela I, Li X, Queen JH, Lynn H (2007) Velocity and attenuation anisotropy: implication of seismic fracture characterizations. Lead Edge 26(9):1170–1174.  https://doi.org/10.1190/1.2780788 CrossRefGoogle Scholar
  28. Maultzsch S, Chapman M, Liu E, Li XY (2003) Modelling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: implication of fracture size estimation from anisotropic measurements. Geophys Prospect 51(5):381–392.  https://doi.org/10.1046/j.1365-2478.2003.00386.x CrossRefGoogle Scholar
  29. Mueller MC (1992) Using shear waves to predict lateral variability in vertical fracture intensity. Lead Edge 11(2):29–35.  https://doi.org/10.1190/1.1436870 CrossRefGoogle Scholar
  30. Quan Y, Harris JM (1997) Seismic attenuation tomography using the frequency shift method. Geophysics 62(3):895–905.  https://doi.org/10.1190/1.1444197 CrossRefGoogle Scholar
  31. Queen J, Rizer W, DeMartini D (1992) Geophysical methods of fracture detection and estimation. In: SEG technical program expanded abstracts, vol 1991, pp 1642–1645.  https://doi.org/10.1190/1.1888839
  32. Saenger EH, Bohlen T (2004) Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics 69(2):583–591.  https://doi.org/10.1190/1.1707078 CrossRefGoogle Scholar
  33. Shi P, Angus D, Nowacki A, Yuan S, Wang Y (2018a) Microseismic full waveform modeling in anisotropic media with moment tensor implementation. Surv Geophys 39(4):567–611.  https://doi.org/10.1007/s10712-018-9466-2 CrossRefGoogle Scholar
  34. Shi P, Yuan S, Wang T, Wang Y, Liu T (2018b) Fracture identification in a tight sandstone reservoir: a seismic anisotropy and automatic multisensitive attribute fusion framework. IEEE Geosci Remote Sens Lett 99:1–5.  https://doi.org/10.1109/LGRS.2018.2853631 CrossRefGoogle Scholar
  35. Simmons JL Jr (2008) Converted-wave splitting estimation and compensation. Geophysics 74(1):D37–D48.  https://doi.org/10.1190/1.3036009 CrossRefGoogle Scholar
  36. Singleton S, Taner MT, Treitel S (2006) Q estimation using Gabor–Morlet joint time-frequency analysis techniques. In: SEG technical program expanded abstracts, vol 2006, pp 1610–1614.  https://doi.org/10.1190/1.2369829
  37. Spencer JW Jr, Shine J (2016) Seismic wave attenuation and modulus dispersion in sandstones. Geophysics 81(3):D211–D231.  https://doi.org/10.1190/geo2015-0342.1 CrossRefGoogle Scholar
  38. Tillotson P, Chapman M, Best AI, Sothcott J, McCann C, Shangxu W, Li XY (2011) Observations of fluid-dependent shear-wave splitting in synthetic porous rocks with aligned penny-shaped fractures. Geophys Prospect 59(1):111–119.  https://doi.org/10.1111/j.1365-2478.2010.00903.x CrossRefGoogle Scholar
  39. Tillotson P, Sothcott J, Best AI, Chapman M, Li XY (2012) Experimental verification of the fracture density and shear-wave splitting relationship using synthetic silica cemented sandstones with a controlled fracture geometry. Geophys Prospect 60(3):516–525.  https://doi.org/10.1111/j.1365-2478.2011.01021.x CrossRefGoogle Scholar
  40. Vavryčuk V (2007) Ray velocity and ray attenuation in homogeneous anisotropic viscoelastic media. Geophysics 72(6):D119–D127.  https://doi.org/10.1190/1.2768402 CrossRefGoogle Scholar
  41. Vernik L, Liu X (1997) Velocity anisotropy in shales: a petrophysical study. Geophysics 62(2):521–532.  https://doi.org/10.1190/1.1444162 CrossRefGoogle Scholar
  42. White RE (1992) The accuracy of estimating Q from seismic data. Geophysics 57(11):1508–1511.  https://doi.org/10.1190/1.1443218 CrossRefGoogle Scholar
  43. Wu X, Chapman M, Li XY, Boston P (2014) Quantitative gas saturation estimation by frequency-dependent amplitude-versus-offset analysis. Geophys Prospect 62(6):1224–1237.  https://doi.org/10.1111/1365-2478.12179 CrossRefGoogle Scholar
  44. Xu T, McMechan GA (1998) Efficient 3-D viscoelastic modeling with application to near-surface land seismic data. Geophysics 63(2):601–612.  https://doi.org/10.1190/1.1444359 CrossRefGoogle Scholar
  45. Yang C, Li XY, Wang Y (2015) An analysis of 3D anisotropic–viscoelastic forward modeling and dissipation. J Geophys Eng 12(6):1036–1048.  https://doi.org/10.1088/1742-2132/12/6/1036 CrossRefGoogle Scholar
  46. Yuan S, Liu Y, Zhang Z, Luo C, Wang S (2018) Prestack stochastic frequency-dependent velocity inversion with rock-physics constraints and statistical associated hydrocarbon attributes. IEEE Geosci Remote Sens Lett 16(1):140–144.  https://doi.org/10.1109/LGRS.2018.2868831 CrossRefGoogle Scholar
  47. Zhu Y, Tsvankin I (2006) Plane-wave propagation in attenuative transversely isotropic media. Geophysics 71(2):T17–T30.  https://doi.org/10.1190/1.2187792 CrossRefGoogle Scholar
  48. Zhu T, Harris JM, Biondi B (2014) Q-compensated reverse-time migration. Geophysics 79(3):S77–S87.  https://doi.org/10.1190/segam2018-2996850.1 CrossRefGoogle Scholar
  49. Zhubayev A, Houben ME, Smeulders DM, Barnhoorn A (2015) Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom. Geophysics 81(1):D45–D56.  https://doi.org/10.1190/geo2015-0211.1 CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of Geophysics and Information TechnologyChina University of GeosciencesBeijingChina
  2. 2.CNPC Key Laboratory of Geophysical ExplorationChina University of Petroleum, BeijingBeijingChina
  3. 3.Edinburgh Anisotropy ProjectBritish Geological SurveyEdinburghUK

Personalised recommendations