Advertisement

Assessment of potential soil erosion and sediment yield in the semi-arid N′fis basin (High Atlas, Morocco) using the SWAT model

  • A. MarkhiEmail author
  • N. Laftouhi
  • Y. Grusson
  • A. Soulaimani
Research Article - Hydrology
  • 16 Downloads

Abstract

Arid and semi-arid regions face multiple problems in terms of water management, particularly where surface water is a primary resource. On the northern flank of the High Atlas Mountains (Morocco), deforestation has resulted in soil erosion and siltation of reservoirs. Better characterization of sediment yield is important for reducing the impact of siltation and prolonging the lifespan of dams. The Soil and Water Assessment Tool was used for modeling the N′fis basin in the southern Tensift watershed, leading to a better understanding of the rate of siltation behind Lalla Takerkoust dam. Runoff and sediment yield simulations were evaluated using graphical and statistical methods. The SWAT model performed well in estimating sediment load during the calibration period from 1990 to 2015 (Nash–Sutcliffe efficiency = 0.5–0.62, R2 = 0.5–0.61). The model enabled the determination of soil loss within each hydrological response unit in the watershed. The overall rate was approximately 123 t Ha−1 for an average annual rainfall of 315 mm yr−1. This high yield has to be taken into account for effective water-resources management in the N′fis basin.

Keywords

Erosion Modeling SWAT Siltation 

Notes

Acknowledgment

All authors thank Doctor Alan E. Fryar, Associate Professor, Department of Earth and Environmental Sciences University of Kentucky, USA and Kevin Hefferan, Associate Professor of Massachusetts Maritime Academy, for their contribution toward reading the article in English.

References

  1. Abbaspour KC (2013) SWAT-CUP 2012: SWAT calibration and uncertainty programs—a user manual. EAWAG, Dübendorf, p 103Google Scholar
  2. Abbaspour K, Johnson C, van Genuchten M (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J 3:1340–1352CrossRefGoogle Scholar
  3. Adama A (2015) Analyses sédimentaires, gestion et approche par télédétection et SIG des risques naturels du bassin versant semi-aride de l’oued n’fis. Thèse de doctorat, Université Cadi Ayyad, Maroc.Google Scholar
  4. Amrhar M (1995) Tectonique et inversions géodynamiques Post-Rift dans le Haut Atlas Occidental: structures, instabilités tectoniques et magmatisme liés à l’ouverture de l’Atlantique central et la collision Afrique-Europe. Thèse de Doctorat d’état es-sciences. Université Cadi Ayyad, MarrakechGoogle Scholar
  5. Arnold G, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment, part 1: model development. JAWRA 34(1):73–90Google Scholar
  6. Arnold JG, Muttiah RS, Srinivasan R, Allen PM (2000) Regional estimation of baseflow and groundwater recharge in the Upper Mississippi River basin. J Hydrol 227(1–4):21–40CrossRefGoogle Scholar
  7. Arnold JG, Kiniry JR, Srinivasan R, Williams JR, Haney EB, Neitsch SL (2012) Soil assessment tool theoretical documentation, version 2005. Grassland, Soil and Water Research Laboratory—Agricultural, TempleGoogle Scholar
  8. Ballio F, Tait S (2012) Sediment transport mechanics preface to the topical issue. Acta Geophys 60(6):1493–1499CrossRefGoogle Scholar
  9. Bouraouia F, Benabdallah S, Jrad A, Bidoglio G (2005) Application of the SWAT model on the Medjerda river basin (Tunisia). Phys Chem Earth 30:497–507CrossRefGoogle Scholar
  10. Bouslihim Y, Kacimi I, Brirhet H, KhatatiM Rochdi A, Pazza N, Miftah A, Yaslo Z (2016) Hydrologic modeling using SWAT and GIS, application to subwatershed Bab-Merzouka (Sebou, Morocco). J Geogr Inf Syst 8(1):20–27Google Scholar
  11. Briak H, Moussadek R, AboumariaK Mrabet R (2016) Assessing sediment yield in Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model. Int Soil Water Conserv Res 4(2016):177–185CrossRefGoogle Scholar
  12. Chaplot V, Saleh A, Jaynes DB (2005) Effect of the accuracy of spatial rainfall information on the modeling of water, sediment, and NO3–N loads at the watershed level. J Hydro 312(1–4):223–234CrossRefGoogle Scholar
  13. Cheggour A (2008) Mesures de l’érosion hydrique à différentes échelles spatiales dans un bassin versant montagneux semi-aride et spatialisation par des S. I. G.: application au bassin versant de la Rhéraya, Haut Atlas, Maroc. Thèse de doctorat, Université Cadi Ayyad, Faculté des Sciences Semlalia, Marrakech, Maroc, p 231Google Scholar
  14. Cho J, Bosch D, Lowrance R, Strickland T, Vellidis G (2009) Effect of spatial distribution of rainfall on temporal and spatial uncertainty of SWAT output. Trans ASABE 52(5):1545–1555CrossRefGoogle Scholar
  15. Débat National sur l’Eau (2006) Royaume du Maroc agence du bassin hydraulique de TensiftGoogle Scholar
  16. El Wahidi (2004) Le cyprès de l’Atlas, in « Les espèces de cyprès » , publication supmed, l’Italie; division de Recherches et d’Exploitations Forestières; Centre régional de la recherche forestière, Marrakech, 19 P; Edizioni centro promozionepubblicità-firenzeGoogle Scholar
  17. Fadil A, Rhinane H, Kaoukaya A, Kharchaf Y, AlamiBachir O (2011) Hydrologic modeling of the Bouregreg watershed (Morocco) using GIS and SWAT model. J Geogr Inf Syst 3:279–289Google Scholar
  18. Fortin JP, Moussa R, Bocquillon C, Villeneuse JP (1990) Hydrotel, a distrubuted hydrological model compatible with remote sensing and geographical information system. Revue des sci de l’Eau 8(1):97–124Google Scholar
  19. Frizon de Lamotte D, Zizi M, Missenard Y, Hafid M, Elazzouzi M, Maury RC, Charrière A, Taki Z, Benammi M, Michard A (2008) The atlas system. In: Michard A, Saddiqi O, Chalouan A, Frizon de Lamotte D (eds) Continental evolution: the geology of Morocco. Springer, BerlinGoogle Scholar
  20. Ghallabi B (2015) Impact des changements climatiques sur les ressources en eaux souterraines dans le bassin de N’fis. Thèse 3ème cycle, Université Cadi Ayyad, Fac. Sci. ttaGoogle Scholar
  21. Ghorbal A, Claude J (1977) Mesure de l'envasement dans les retenues de sept barrages en Tunisie: estimation des transports solides, vol 122. IAHS Publication, Wallingford, UK, pp 219–232Google Scholar
  22. Grusson Y, Sun X, Gascoin S, Sauvage S, Raghavan S, Anctil F, Sáchez-Pérez JM (2015) Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. J Hydrol 531(2015):574–588CrossRefGoogle Scholar
  23. Gyr A, Hoyer K (2006) Sediment transport: a geophysical phenomenon. Springer, DordrechtGoogle Scholar
  24. Havrylenko SB, Bodoque JM, Srinivasan R, Zucarelli GV, Mercuri P (2016) Assessment of the soil water content in the Pampas region using SWAT. CATENA 137:298–309CrossRefGoogle Scholar
  25. Jha MK, Gassman PW (2014) Changes in hydrology and streamflow as predicted by a modelling experiment forced with climate models. Hydrol Process 28(5):2772–2781CrossRefGoogle Scholar
  26. Khali Issa L, Ben Hamman KLH, Raissouni A, El Arrim A (2016) Quantitative Mapping of Soil Erosion Risk Using GIS/USLE Approach at the Kalaya Watershed (North Western Morocco). J Mater Environ Sci 7(8):2778–2795 (ISSN: 2028–2508 CODEN: JMESC 2778) Google Scholar
  27. Kharchaf Y, Rhinane H, Kaoukaya A, Fadil A (2013) The contribution of the geospatial information to the hydrological modeling of a watershed with reservoirs: case of Low OumErRbiaa Basin (Morocco). J Geogr Inf Syst 5:258–268Google Scholar
  28. Markhi A, Laftouhi N, Soulaimani A, Fniguire F (2015) Quantification et évaluation de l’érosion hydrique en utilisant le modèle RUSLE et déposition intégrés dans un SIG. Application dans le bassin versant n’fis dans le haut atlas de Marrakech (Maroc). ESJ 11(29):1857–7881Google Scholar
  29. Mbonimpa EG, Yuan Y, Mehaffey MH, Jackson MA (2012) SWAT model application toassess the impact of intensive corn-farming on runoff, sediments and phosphorous loss from an agricultural watershed in Wisconsin. J Water Resour Prot 4:423–431CrossRefGoogle Scholar
  30. Merzouki T (1992) Diagnostic de l’envasement des grands barrages marocains. La Rev Marocaine du Génie Civ 38:4650Google Scholar
  31. Mokhchane M (1983) Contribution à l’étude des réservoirsaquifères profonds de la bordurenord entre l’Atlas de Demnat et Imin’Tanout (Maroc), these 3e cycle. University of Franche-Comté, Franche-Comté, p 119Google Scholar
  32. Molina-Navarro E, Trolle D, Martínez-Pérez S, Sastre-Merlín A, Jeppesen E (2014) Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios. J Hydrol 509:354–366CrossRefGoogle Scholar
  33. Moriasi DN, Starks PJ (2010) Effects of the resolution of soil dataset and precipitation dataset on SWAT2005 streamflow calibration parameters and simulation accuracy. J Soil Water Conserv 65(2):163–178CrossRefGoogle Scholar
  34. Moriasi DN, Steiner JL, Arnold JG (2011) Sediment measurement and transport modeling: impact of riparian and filter strip buffers. J Environ Qual 40:807–814CrossRefGoogle Scholar
  35. Mtibaa S, Hotta N, Irie M (2018) Analysis of the efficacy and cost effectiveness of bestmanagement practices for controlling sediment yield: a case study of the Joumine watershed Tunisia. J Sci Total Environ 616–617:1–16CrossRefGoogle Scholar
  36. Nahid A, Benzakour M (2002) Enregistrements sédimentaires et contrôletectonique dans la genèse des archives morpho-sédimentaires quaternairesde la coupe d’Alhnayn (vallée méridienne du N’fis, Maroc). Estudios Geol 58:145–158CrossRefGoogle Scholar
  37. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(03):282–290CrossRefGoogle Scholar
  38. Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2005) Soil and water assessment tool theoretical documentation—version 2009 Soil and water research laboratory, agricultural research service. US Department of Agriculture, Temple, p 647Google Scholar
  39. Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute, BryanGoogle Scholar
  40. Ouallali A, Moukhchane M, Aassoumi H, Berrad F, Dakir I (2016) Evaluation and mapping of water erosion rates in the watershed of the ArbaaAyacha river (Western Rif, Northern Morocco). Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la Terre, Genève, pp 65–79Google Scholar
  41. Plantecoste M (2002) Caractérisation des sols et de leurs propriétéshydrodynamiques pour la modélisation hydrologique en milieu semi-aride, Bassin versant du Tensift—Maroc, Mémoire de fin d’étude ENSAM DAA “Physique des surfaces naturelles et génie hydrologique” (ENSAR)Google Scholar
  42. Probst JL, Amiotte-Suchet P (1992) Fluvial suspended sediment transport and mechanical erosion in the Maghreb (North Africa). Hydrol Sci J 37:621–637CrossRefGoogle Scholar
  43. Remini B, Hallouche W (2003) Les barrages du Maghreb face au phénomène de l’envasement. Revue VECTEUR Environ (Canada) 36(6):27–30Google Scholar
  44. Rice JA (2006) Mathematical statistics and data analysis. Cengage Learning, BostonGoogle Scholar
  45. Saltelli AEM, Scott K, Chan S Marian (2000) Sensitivity analysis. Wiley, ChichesterGoogle Scholar
  46. SCS (1972) Section 4: hydrology. National engineering handbook. USDA Soil Conservation Service, Washington DCGoogle Scholar
  47. Williams JR (1975) Sediment routing for agricultural watersheds. J Am Water Resour Assoc 11:965–974CrossRefGoogle Scholar
  48. Yang J, Reichert P, Abbaspour KC, Xia J, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J Hydrol 358(1–2):1–23CrossRefGoogle Scholar
  49. Zettam A, Taleb A, Sauvage S, Boithias L, Belaidi N, Sánchez-Pérez J (2017) Modelling hydrology and sediment transport in a semi-arid and anthropized catchment using the SWAT model: the case of the Tafna river (Northwest Algeria). Water 2017(9):216CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2019

Authors and Affiliations

  • A. Markhi
    • 1
    Email author
  • N. Laftouhi
    • 1
  • Y. Grusson
    • 2
  • A. Soulaimani
    • 1
  1. 1.GEOHYD Laboratory, Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakechMorocco
  2. 2.Department of Soil and EnvironmentSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations