Advertisement

Acta Geophysica

, Volume 66, Issue 6, pp 1341–1357 | Cite as

Mantle dynamics beneath Greece from SKS and PKS seismic anisotropy study

  • George Kaviris
  • Ioannis Fountoulakis
  • Ioannis Spingos
  • Christos Millas
  • Panayotis Papadimitriou
  • George Drakatos
Research Article - Solid Earth Sciences
  • 81 Downloads

Abstract

SKS and PKS splitting parameters were determined in the broader Greek region using data from 45 stations of the Hellenic Unified Seismological Network and the Kandilli Observatory and Earthquake Research Institute, utilizing teleseismic events that occurred between 2010 and 2017. Data were processed for shear-wave splitting with the Minimum Energy Method that was considered the optimal. The results generally confirm the existence of anisotropic zonation in the Hellenic subduction system, with alternating trench-normal and trench-parallel directions. The zonation is attributed to the upper and lower olivine fabric layers that can, potentially, be present in the subduction zone. At the edges of this zone, two possible toroidal flow cases have been identified, implying the existence of tears that allow the inflow of asthenospheric material in the mantle wedge. The high number of null measurements in the KZN and XOR stations indicates a possible anisotropic transition zone between the fore-arc and back-arc areas. SKS and PKS splitting results are jointly interpreted, given that they yield similar values in most cases.

Keywords

Shear-wave splitting Tear Hellenic Subduction Zone Mantle wedge 

Notes

Acknowledgements

We are grateful to the two anonymous reviewers for their constructive comments that helped to ameliorate the final version of the present study. We also thank Ms Varvara Tsironi for her assistance in the schematic 3D representation of Fig. 7. The tomographic image of Fig. 7 was obtained by the IRIS service http://ds.iris.edu/dms/products/emc. We thank all researchers who participated in the installation and maintenance of the of the HUSN and KOERI stations. The Obpsy framework was used for the processing of the seismological data (Beyreuther et al. 2010). This study was supported by the project HELPOS—Hellenic Plate Observing System (MIS 5002697).

References

  1. Abers GA, Van Keken PE, Hacker BR (2017) The cold and relatively dry nature of mantle forearcs in subduction zones. Nat Geosci 10:333–337CrossRefGoogle Scholar
  2. Abt DL, Fischer KM, Abers GA, Protti M, González V, Strauch W (2010) Constraints on upper mantle anisotropy surrounding the Cocos slab from SK(K)S splitting. J Geophys Res Solid Earth 115:1–16.  https://doi.org/10.1029/2009JB006710 CrossRefGoogle Scholar
  3. Baccheschi P, Margheriti L, Steckler MS, Boschi E (2011) Anisotropy patterns in the subducting lithosphere and in the mantle wedge: a case study—The southern Italy subduction system. J Geophys Res Solid Earth 116:1–15.  https://doi.org/10.1029/2010JB007961 CrossRefGoogle Scholar
  4. Barruol G, Mainprice D (1993) A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves. Phys Earth Planet Inter 78:281–300.  https://doi.org/10.1016/0031-9201(93)90161-2 CrossRefGoogle Scholar
  5. Barruol G, Silver PG, Vauchez A (1997) Seismic anisotropy in the eastern United States: Deep structure of a complex continental plate. J Geophys Res Earth 102:8329–8348.  https://doi.org/10.1029/96jb03800 CrossRefGoogle Scholar
  6. Bean CJ, Jacob AWD (1990) P-wave anisotropy in the lower lithosphere. Earth Planet Sci Lett 99(1–2):58–65.  https://doi.org/10.1016/0012-821X(90)90070-E CrossRefGoogle Scholar
  7. Behn MD, Conrad CP, Silver PG (2004) Detection of upper mantle flow associated with the African Superplume. Earth Planet Sci Lett 224:259–274.  https://doi.org/10.1016/j.epsl.2004.05.026 CrossRefGoogle Scholar
  8. Berens P (2009) Circular statistics matlab toolbox. J Stat Softw 31:1–21CrossRefGoogle Scholar
  9. Berk Biryol C, Beck SL, Zandt G, Özacar AA (2011) Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys J Int 184:1037–1057.  https://doi.org/10.1111/j.1365-246X.2010.04910.x CrossRefGoogle Scholar
  10. Beyreuther M, Barsch R, Krischer L, Megies T, Behr Y, Wassermann J (2010) ObsPy: a python toolbox for seismology. Seismol Res Lett 81:530–533.  https://doi.org/10.1785/gssrl.81.3.530 CrossRefGoogle Scholar
  11. Bocchini GM, Brüstle A, Becker D, Meier T, van Keken PE, Ruscic M, Papadopoulos GA, Rische M, Friederich W (2018) Tearing, segmentation, and backstepping of subduction in the Aegean: new insights from seismicity. Tectonophysics 734–735:96–118.  https://doi.org/10.1016/j.tecto.2018.04.002 CrossRefGoogle Scholar
  12. Bowman JR, Ando MA (1987) Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone. Geophys J R A S 88:24–41CrossRefGoogle Scholar
  13. Chousianitis K, Ganas A, Gianniou M (2013) Kinematic interpretation of present-day crustal deformation in central Greece from continuous GPS measurements. J Geodyn 71:1–13.  https://doi.org/10.1016/j.jog.2013.06.004 CrossRefGoogle Scholar
  14. Christensen NI, Salisbury MH (1979) Seismic anisotropy in the oceanic upper mantle: evidence from the Bay of Islands Ophiolite Complex. J Geophys Res Sol Earth 84(B9):4601–4610.  https://doi.org/10.1029/JB084iB09p04601 CrossRefGoogle Scholar
  15. Confal JM, Eken T, Tilmann F, Yolsal-Çevikbilen S, Çubuk-Sabuncu Y, Saygin E, Taymaz T (2016) Investigation of mantle kinematics beneath the Hellenic-subduction zone with teleseismic direct shear waves. Phys Earth Planet Inter 261:141–151.  https://doi.org/10.1016/j.pepi.2016.10.012 CrossRefGoogle Scholar
  16. Currie CA, Cassidy JF, Hyndman RD, Bostock MG (2004) Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton. Geophys J Int 157:341–353.  https://doi.org/10.1111/j.1365-246X.2004.02175.x CrossRefGoogle Scholar
  17. Endrun B, Lebedev S, Meier T, Tirel C, Friederich W (2011) Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. Nat Geosci 4:203–207.  https://doi.org/10.1038/ngeo1065 CrossRefGoogle Scholar
  18. Evangelidis CP (2017) Seismic anisotropy in the Hellenic subduction zone: effects of slab segmentation and subslab mantle flow. Earth Planet Sci Lett 480:97–106.  https://doi.org/10.1016/j.epsl.2017.10.003 CrossRefGoogle Scholar
  19. Evangelidis CP, Liang WT, Melis NS, Konstantinou KI (2011) Shear wave anisotropy beneath the Aegean inferred from SKS splitting observations. J Geophys Res Solid Earth 116:1–14.  https://doi.org/10.1029/2010JB007884 CrossRefGoogle Scholar
  20. Faccenda M, Capitanio FA (2013) Seismic anisotropy around subduction zones: insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochem Geophys Geosyst 14:243–262.  https://doi.org/10.1002/ggge.20055 CrossRefGoogle Scholar
  21. Floyd MA, Billiris H, Paradissis D, Veis G, Avallone A, Briole P, McClusky S, Nocquet JM, Palamartchouk K, Parsons B, England PC (2010) A new velocity field for Greece: implications for the kinematics and dynamics of the Aegean. J Geophys Res Solid Earth 115:1–25.  https://doi.org/10.1029/2009JB007040 CrossRefGoogle Scholar
  22. Ganas A, Oikonomou IA, Tsimi C (2013) NOAfaults: a digital database for active faults in Greece. Bull Geol Soc Greece 47:518.  https://doi.org/10.12681/bgsg.11079 CrossRefGoogle Scholar
  23. Ganas A, Elias P, Bozionelos G, Papathanassiou G, Avallone A, Papastergios A, Valkaniotis S, Parcharidis I, Briole P (2016) Coseismic deformation, field observations and seismic fault of the 17 November 2015 M = 6.5, Lefkada Island, Greece earthquake. Tectonophysics 687:210–222CrossRefGoogle Scholar
  24. Govers R, Wortel MJR (2005) Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet Sci Lett 236:505–523.  https://doi.org/10.1016/j.epsl.2005.03.022 CrossRefGoogle Scholar
  25. Graw JH, Hansen SE (2017) Upper mantle seismic anisotropy beneath the Northern Transantarctic Mountains, Antarctica from PKS, SKS, and SKKS splitting analysis. Geochem Geophys Geosyst 18:544–557.  https://doi.org/10.1002/2016GC006729 CrossRefGoogle Scholar
  26. Guillaume B, Husson L, Funiciello F, Faccenna C (2013) The dynamics of laterally variable subductions: Laboratory models applied to the Hellenides. Solid Earth 4:179–200.  https://doi.org/10.5194/se-4-179-2013
  27. Halpaap F, Rondenay S, Ottemöller L (2018) Seismicity, deformation, and metamorphism in the Western Hellenic subduction zone: new constraints from tomography. J Geophys Res Solid Earth 123:3000–3026.  https://doi.org/10.1002/2017JB015154 CrossRefGoogle Scholar
  28. Hatzfeld D, Karagianni E, Kassaras I, Kiratzi A, Louvari E, Lyon-Caen H, Makropoulos K, Papadimitriou P, Bock G, Priestley K (2001) Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation. J Geophys Res 106:30737–30753.  https://doi.org/10.1029/2001JB000387 CrossRefGoogle Scholar
  29. Jolivet L (2001) A comparison of geodetic and finite strain pattern in the Aegean, geodynamic implications. Earth Planet Sci Lett 187:95–104.  https://doi.org/10.1016/S0012-821X(01)00277-1 CrossRefGoogle Scholar
  30. Jolivet L, Faccenna C, Huet B, Labrousse L, Le Pourhiet L, Lacombe O, Lecomte E, Burov E, Denèle Y, Brun JP, Philippon M, Paul A, Salaün G, Karabulut H, Piromallo C, Monié P, Gueydan F, Okay AI, Oberhänsli R, Pourteau A, Augier R, Gadenne L, Driussi O (2013) Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics 597–598:1–33.  https://doi.org/10.1016/j.tecto.2012.06.011 CrossRefGoogle Scholar
  31. Jung H (2011) Seismic anisotropy produced by serpentine in mantle wedge. Earth Planet Sci Lett 307:535–543.  https://doi.org/10.1016/j.epsl.2011.05.041 CrossRefGoogle Scholar
  32. Jung H, Karato SI (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463.  https://doi.org/10.1126/science.1062235 CrossRefGoogle Scholar
  33. Kahle HG, Straub C, Reilinger R, McClusky S, King R, Hurst K, Veis G, Kastens K, Cross P (1998) The strain rate field in the eastern Mediterranean region, estimated by repeated GPS measurements. Tectonophysics 294:237–252.  https://doi.org/10.1016/S0040-1951(98)00102-4 CrossRefGoogle Scholar
  34. Kapetanidis V, Deschamps A, Papadimitriou P, Matrullo E, Karakonstantis A, Bozionelos G, Kaviris G, Serpetsidaki A, Lyon-caen H, Voulgaris N, Bernard P, Sokos E, Makropoulos K (2015) The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults. Geophys J Int 202:2044–2073.  https://doi.org/10.1093/gji/ggv249 CrossRefGoogle Scholar
  35. Karagianni EE, Papazachos CB, Panagiotopoulos DG, Suhadolc P, Vuan A, Panza GF (2005) Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves. Geophys J Int 160:127–143.  https://doi.org/10.1111/j.1365-246X.2005.02354.x CrossRefGoogle Scholar
  36. Karakostas V, Papadimitriou E, Karakaisis G, Papazachos C, Scordilis E, Vargemezis G, Aidona E (2003) The 2001 Skyros, northern Aegean, Greece, earthquake sequence: off-fault aftershocks, tectonic implications, and seismicity triggering. Geophys Res Lett 30:1012.  https://doi.org/10.1029/2002/GL015814 CrossRefGoogle Scholar
  37. Karakostas V, Papadimitriou E, Gospodinov D (2014) Modelling the 2013 North Aegean (Greece) seismic sequence: geometrical and frictional constraints, and aftershock probabilities. Geophys J Int 197:525–541.  https://doi.org/10.1093/gji/ggt523 CrossRefGoogle Scholar
  38. Karato SI (2008) Deformation of earth materials: introduction to the rheology of solid earth. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Karato SI, Jung H, Katayama I, Skemer P (2008) Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Ann Rev Earth Planet Sci. 36:59–95.  https://doi.org/10.1146/annurev.earth.36.031207.124120 CrossRefGoogle Scholar
  40. Kassaras I, Kapetanidis V (2018) Resolving the tectonic stress by the inversion of earthquake focal mechanisms. Application in the region of Greece. In: Sebastiano DM (ed) Moment tensor solutions: a useful tool for seismotectonics, 1st edn. Springer, Berlin, pp 405–452CrossRefGoogle Scholar
  41. Kassaras I, Kalantoni D, Benetatos Ch, Kaviris G, Michalaki K, Sakellariou N, Makropoulos K (2015) Seismic damage scenarios in Lefkas old town (W. Greece). Bull Earth Eng 13(12):3669–3711Google Scholar
  42. Kaviris G, Papadimitriou P, Kravvariti Ph, Kapetanidis V, Karakonstantis A, Voulgaris N, Makropoulos K (2015) A detailed seismic anisotropy study during the 2011–2012 unrest period in the Santorini Volcanic Complex. Phys Earth Planet Int 238:51–88. https://dx.org/10.1016/j.pepi.2014.11.002
  43. Kaviris G, Spingos I, Kapetanidis V, Papadimitriou P, Voulgaris N, Makropoulos K (2017) Upper crust seismic anisotropy study and temporal variations of shear-wave splitting parameters in the western Gulf of Corinth (Greece) during 2013. Phys Earth Planet Int 269:148–164.  https://doi.org/10.1016/j.pepi.2017.06.006 CrossRefGoogle Scholar
  44. Kaviris G, Millas C, Spingos I, Kapetanidis V, Fountoulakis I, Papadimitriou P, Voulgaris N, Makropoulos K (2018a) Observations of shear-wave splitting parameters in the Western Gulf of Corinth focusing on the 2014 Mw = 5.0 earthquake. Phys Earth Planet Inter 282:60–76.  https://doi.org/10.1016/j.pepi.2018.07.005 CrossRefGoogle Scholar
  45. Kaviris G, Spingos I, Millas C, Kapetanidis V, Fountoulakis I, Papadimitriou P, Voulgaris N, Drakatos G (2018b) Effects of the January 2018 seismic sequence on shear-wave splitting in the upper crust of Marathon (NE Attica, Greece). Phys Earth Planet Inter 285:45–58.  https://doi.org/10.1016/j.pepi.2018.10.007 CrossRefGoogle Scholar
  46. Kawasaki I, Kon’no F (1984) Azimuthal anisotropy of surface waves and the possible type of the seismic anisotropy due to preferred orientation of olivine in the uppermost mantle beneath the Pacific Ocean. J Phys Earth 32:229–244.  https://doi.org/10.4294/jpe1952.32.229 CrossRefGoogle Scholar
  47. Kennett BLN, Engdahl ER (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105:429–465.  https://doi.org/10.1111/j.1365-246X.1991.tb06724.x CrossRefGoogle Scholar
  48. Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122:104–108.  https://doi.org/10.1111/j.1365-246X.1995.tb03540.x CrossRefGoogle Scholar
  49. Kiratzi A, Louvari E (2003) Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: a new database. J Geodyn 36:251–274.  https://doi.org/10.1016/S0264-3707(03)00050-4 CrossRefGoogle Scholar
  50. Kneller EA, Van Keken PE (2008) Effect of three-dimensional slab geometry on deformation in the mantle wedge: implications for shear wave anisotropy. Geochem Geophys Geosyst 9:1–21.  https://doi.org/10.1029/2007GC001677 CrossRefGoogle Scholar
  51. Kouskouna V, Sakkas G (2013) The University of Athens Hellenic Macroseismic Database (HMDB.UoA): historical earthquakes. J Seismol 17:1253–1280.  https://doi.org/10.1007/s10950-013-9390-3 CrossRefGoogle Scholar
  52. Kouskouna V, Makropoulos K, Tsiknakis K (1993) Contribution of historical information to a realistic seismicity and hazard assessment of an area. The Ionian Islands earthquakes of 1767 and 1769: historical investigation. In: Stucchi, M (ed) Historical investigation of European earthquakes, materials of the CEC project review of historical seismicity in Europe, 1:195–206Google Scholar
  53. Kreemer C, Blewitt G, Klein EC (2014) A geodetic plate motion and Global Strain Rate Model. Geochem Geophys Geosyst 15:3849–3889.  https://doi.org/10.1002/2014GC005407 CrossRefGoogle Scholar
  54. Le Pichon X, Kreemer C (2010) The miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annu Rev Earth Planet Sci 38:323–351.  https://doi.org/10.1146/annurev-earth-040809-152419 CrossRefGoogle Scholar
  55. Liu KH, Gao SS (2013) Making reliable shear-wave splitting measurements. Bull Seismol Soc Am 103:2680–2693.  https://doi.org/10.1785/0120120355 CrossRefGoogle Scholar
  56. Long MD, Silver PG (2008) The subduction zone flow field from seismic anisotropy: a global view. Science 319:315–318.  https://doi.org/10.1126/science.1150809 CrossRefGoogle Scholar
  57. Long MD, Silver PG (2009) Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surv Geophys 30:407–461CrossRefGoogle Scholar
  58. Long MD, van der Hilst RD (2006) Shear wave splitting from local events beneath the Ryukyu arc: trench-parallel anisotropy in the mantle wedge. Phys Earth Planet Int 155:300–312.  https://doi.org/10.1016/j.pepi.2006.01.003 CrossRefGoogle Scholar
  59. Long MD, Wirth EA (2013) Mantle flow in subduction systems: the mantle wedge flow field and implications for wedge processes. J Geophys Res Solid Earth 118:583–606.  https://doi.org/10.1002/jgrb.50063 CrossRefGoogle Scholar
  60. Makropoulos K, Kaviris G, Kouskouna V (2012) An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat Hazards Earth Syst Sci 12:1425–1430.  https://doi.org/10.5194/nhess-12-1425-2012
  61. McKenzie D (1972) Active tectonics of the Mediterranean Region. Geophys J Int 30:109–185.  https://doi.org/10.1111/j.1365-246X.1972.tb02351.x CrossRefGoogle Scholar
  62. Menant A, Sternai P, Jolivet L, Guillou-Frottier L, Gerya T (2016) 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: the eastern Mediterranean case. Earth Planet Sci Lett 442:93–107.  https://doi.org/10.1016/j.epsl.2016.03.002 CrossRefGoogle Scholar
  63. Montagner JP, Kennett BLN (1996) How to reconcile body-wave and normal-mode reference earth models. Geophys J Int 125:229–248.  https://doi.org/10.1111/j.1365-246X.1996.tb06548.x CrossRefGoogle Scholar
  64. Mutlu AK, Karabulut H (2011) Anisotropic Pn tomography of Turkey and adjacent regions. Geophys J Int 187:1743–1758.  https://doi.org/10.1111/j.1365-246X.2011.05235.x CrossRefGoogle Scholar
  65. Nicolas A, Christensen NI (1987) Formation of anisotropy in uppermantle peridotites: a review, in composition, structure and dynamics of the lithosphere-asthenosphere system. Am Geophys Union Geo Dyn Monogr Ser 16:111–123.  https://doi.org/10.1029/GD016 CrossRefGoogle Scholar
  66. Nijholt N, Govers R (2015) The role of passive margins on the evolution of Subduction-Transform Edge Propagators (STEPs). J Geophys Res Solid Earth 120:7203–7230.  https://doi.org/10.1002/2015JB012202 CrossRefGoogle Scholar
  67. Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res Solid Earth 109:1–23.  https://doi.org/10.1029/2003JB002830 CrossRefGoogle Scholar
  68. Olive JA, Pearce F, Rondenay S, Behn MD (2014) Pronounced zonation of seismic anisotropy in the Western Hellenic subduction zone and its geodynamic significance. Earth Planet Sci Lett 391:100–109.  https://doi.org/10.1016/j.epsl.2014.01.029 CrossRefGoogle Scholar
  69. Papadimitriou EE (2002) Mode of strong earthquake recurrence in the central Ionian Islands (Greece): possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks. Bull Seismol Soc Am 92:3293–3308CrossRefGoogle Scholar
  70. Papadimitriou EE, Sykes LR (2001) Evolution of the stress field in the Northern Aegean Sea (Greece). Geophys J Int 146:747–759.  https://doi.org/10.1046/j.0956-540X.2001.01486.x CrossRefGoogle Scholar
  71. Papadimitriou P, Kaviris G, Makropoulos K (1999) Evidence of shear-wave splitting in the eastern Corinthian Gulf (Greece). Phys Earth Planet Inter 114:3–13.  https://doi.org/10.1016/S0031-9201(99)00041-2 CrossRefGoogle Scholar
  72. Papadimitriou P, Kaviris G, Makropoulos K (2006) The Mw = 6.3 2003 Lefkada Earthquake (Greece) and induced transfer changes. Tectonophysics 423:73–82CrossRefGoogle Scholar
  73. Papadimitriou P, Kapetanidis V, Karakonstantis A, Kaviris G, Voulgaris N, Makropoulos K (2015) The Santorini Volcanic Complex: a detailed multi-parameter seismological approach with emphasis on the 2011–2012 unrest period. J Geodyn 85:32–57.  https://doi.org/10.1016/j.jog.2014.12.004 CrossRefGoogle Scholar
  74. Papadimitriou P, Kassaras I, Kaviris G, Tselentis G-A, Voulgaris N, Lekkas E, Chouliaras G, Evangelidis C, Pavlou K, Kapetanidis V, Karakonstantis A, Kazantzidou-Firtinidou D, Fountoulakis I, Millas C, Spingos I, Aspiotis T, Moumoulidou A, Skourtsos E, Antoniou V, Andreadakis E, Mavroulis S, Kleanthi M (2018) The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations. J Geodyn 115:23–42.  https://doi.org/10.1016/j.jog.2018.01.009 CrossRefGoogle Scholar
  75. Papanikolaou DJ, Royden LH (2007) Disruption of the Hellenic arc: late Miocene extensional detachment faults and steep Pliocene-Quaternary normal faults—Or what happened at Corinth? Tectonics.  https://doi.org/10.1029/2006TC002007
  76. Papazachos B, Papazachou K (2003) Earthquakes in Greece (in Greek). Ziti Publications, AthensGoogle Scholar
  77. Papazachos BC, Dimitriadis ST, Panagiotopoulos DG, Papazachos CB, Papadimitriou EE (2005) Deep structure and active tectonics of the southern Aegean volcanic arc. Dev Volcano 7:47–64.  https://doi.org/10.1016/S1871-644X(05)80032-4 CrossRefGoogle Scholar
  78. Paul A, Karabulut H, Mutlu AK, Salaün G (2014) A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean-Anatolia region. Earth Planet Sci Lett 389:14–22.  https://doi.org/10.1016/j.epsl.2013.12.019 CrossRefGoogle Scholar
  79. Pearce D, Rondenay S, Sachpazi M, Charalampakis M, Royden LH (2012) Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic subduction Zone. J Geophys Res Solid Earth.  https://doi.org/10.1029/2011JB009023
  80. Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res Solid Earth 108:1–23.  https://doi.org/10.1029/2002JB001757 CrossRefGoogle Scholar
  81. Portner D, Delph J, Biryol B, Beck S, Zandt G, Özacar A, Sandvol E, Türkelli N (2018) Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia. Geosphere 14(3):907–925.  https://doi.org/10.1130/GES01617.1 CrossRefGoogle Scholar
  82. Raitt RW, Shor GG Jr, Francis TJG, Morris GB (1969) Anisotropy of the Pacific upper mantle. J Geophys Res 74(12):3095–3109.  https://doi.org/10.1029/JB074i012p03095 CrossRefGoogle Scholar
  83. Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res Solid Earth 111:1–26.  https://doi.org/10.1029/2005JB004051 CrossRefGoogle Scholar
  84. Royden LH, Papanikolaou DJ (2011) Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochem Geophys Geosyst 12:1–24.  https://doi.org/10.1029/2010GC003280 CrossRefGoogle Scholar
  85. Russo RM, Silver PG (1994) Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science 263:1105–1111.  https://doi.org/10.1126/science.263.5150.1105 CrossRefGoogle Scholar
  86. Salaün G, Pedersen HA, Paul A, Farra V, Karabulut H, Hatzfeld D, Papazachos C, Childs DM, Pequegnat C, Afacan T, Aktar M, Bourova-Flin E, Cambaz D, Hatzidimitriou P, Hubans F, Kementzetzidou D, Karagianni E, Karagianni I, Komec Mutlu A, Dimitrova L, Ozakin Y, Roussel S, Scordilis M, Vamvakaris D (2012) High-resolution surface wave tomography beneath the Aegean-Anatolia region: constraints on upper-mantle structure. Geophys J Int 190:406–420.  https://doi.org/10.1111/j.1365-246X.2012.05483.x CrossRefGoogle Scholar
  87. Savage MK (1999) Seismic anisotropy and mantle deformation: what have we learnt from shear wave splitting? Rev Geophys 37:65–106.  https://doi.org/10.1029/98RG02075 CrossRefGoogle Scholar
  88. Schmid C, van der Lee S, Giardini D (2004) Delay times and shear wave splitting in the Mediterranean region. Geophys J Int 159:275–290.  https://doi.org/10.1111/j.1365-246X.2004.02381.x CrossRefGoogle Scholar
  89. Silver PG, Chan WW (1991) Shear wave splitting and sub continental mantle deformation. J Geophys Res 96:429–454.  https://doi.org/10.1029/91JB00899 CrossRefGoogle Scholar
  90. Sokos E, Zahradník J, Gallovič F, Serpetsidaki A, Plicka V, Kiratzi A (2016) Asperity break after 12 years: the Mw6. 4 2015 Lefkada (Greece) earthquake. Geophys Res Lett 43(12):6137–6145.  https://doi.org/10.11002/2016GL069427
  91. Sternai P, Jolivet L, Menant A, Gerya T (2014) Driving the upper plate surface deformation by slab rollback and mantle flow. Earth Planet Sci Lett 405:110–118.  https://doi.org/10.1016/j.epsl.2014.08.023 CrossRefGoogle Scholar
  92. Stucchi M, Rovida A, Gomez Capera AA, Alexandre P, Camelbeeck T, Demircioglu MB, Gasperini P, Kouskouna V, Musson RMW, Radulian M, Sesetyan K, Vilanova S, Baumont D, Bungum H, Fäh D, Lenhardt W, Makropoulos K, Martinez Solares JM, Scotti O, Živčić M, Albini P, Batllo J, Papaioannou C, Tatevossian R, Locati M, Meletti C, Viganò D, Giardini D (2013) The SHARE European Earthquake Catalogue (SHEEC) 1000-1899. J Seismol 17:523–544.  https://doi.org/10.1007/s10950-012-9335-2 CrossRefGoogle Scholar
  93. Suckale J, Rondenay S, Sachpazi M, Charalampakis M, Hosa A, Royden LH (2009) High-resolution seismic imaging of the western Hellenic subduction zone using teleseismic scattered waves. Geophys J Int 178:775–791.  https://doi.org/10.1111/j.1365-246X.2009.04170.x CrossRefGoogle Scholar
  94. Tommasi A, Tikoff B, Vauchez A (1999) Upper mantle tectonics: three-dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth Planet Sci Lett 168:173–186.  https://doi.org/10.1016/S0012-821X(99)00046-1 CrossRefGoogle Scholar
  95. Vecsey L, Plomerová J, Babuška V (2008) Shear-wave splitting measurements—problems and solutions. Tectonophysics 462:178–196.  https://doi.org/10.1016/j.tecto.2008.01.021 CrossRefGoogle Scholar
  96. Visser K, Trampert J, Kennett BLN (2008) Global anisotropic velocity maps for higher mode Love and Rayleigh waves. Geophys J Int 172:1016–1032.  https://doi.org/10.1111/j.1365-246X.2007.03685.x CrossRefGoogle Scholar
  97. Wüstefeld A, Bokelmann G (2007) Null detection in shear-wave splitting measurements. Bull Seismol Soc Am 97:1204–1211.  https://doi.org/10.1785/0120060190 CrossRefGoogle Scholar
  98. Wüstefeld A, Bokelmann G, Zaroli C, Barruol G (2008) SplitLab: a shear-wave splitting environment in Matlab. Comput Geosci 34:515–528.  https://doi.org/10.1016/j.cageo.2007.08.002 CrossRefGoogle Scholar
  99. Wüstefeld A, Al-Harrasi O, Verdon JP, Wookey J, Kendall JM (2010) A strategy for automated analysis of passive microseismic data to image seismic anisotropy and fracture characteristics. Geophys Prospect 58:755–773.  https://doi.org/10.1111/j.1365-2478.2010.00891.x CrossRefGoogle Scholar
  100. Zhang S, Karato S (1995) Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375:774–777.  https://doi.org/10.1038/375774a0 CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2018

Authors and Affiliations

  1. 1.Section of Geophysics and Geothermics, Department of Geology and GeoenvironmentNational and Kapodistrian University of AthensAthensGreece
  2. 2.Geodynamic InstituteNational Observatory of AthensAthensGreece

Personalised recommendations