Acta Geophysica

, Volume 66, Issue 6, pp 1291–1301 | Cite as

On estimating time offsets in the ambient noise correlation function caused by instrument response errors

  • Fang Ye
  • Jun LinEmail author
  • Xiaopu Zhang
  • Xiaoxue Jiang
Research Article - Solid Earth Sciences


Broadband seismic networks are becoming more intensive, generating a large amount of data in the long-term collection process. When processing the data, the researchers rely almost on instrument response files to understand the information related to the instrument. Aiming at the process of instrument response recording and instrument response correction, we identify several sources of the instrument response phase error, including pole–zero change, the causality difference in instrument correction method, and the problem of filter coefficient recording. The data time offset range from the instrument response phase error is calculated from one sample point to several seconds using the ambient noise data recorded by multiple seismic stations. With different data delays, the time offset of the noise correlation function is estimated to be 74% to 99% of the data delay time. In addition, the influence of instrument response phase error on the measurement of seismic velocity change is analyzed by using ambient noise data with pole–zero change, and the results show that the abnormal wave velocity with exceeding the standard value is exactly in the time period of the instrument response error, which indicates that the instrument response error affects the study of seismology.


Time offset Instrument response Seismic ambient noise Seismic velocity change 


  1. Bensen GD et al (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169:1239–1260. CrossRefGoogle Scholar
  2. Brenguier F, Campillo M, Hadziioannou C, Shapiro NM, Nadeau RM, Larose E (2008a) Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations. Science 321:1478–1481. CrossRefGoogle Scholar
  3. Brenguier F, Shapiro NM, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008b) Towards forecasting volcanic eruptions using seismic noise. Nat Geosci 1:126–130CrossRefGoogle Scholar
  4. Brenguier F, Clarke D, Aoki Y, Shapiro NM, Campillo M, Ferrazzini V (2011) Monitoring volcanoes using seismic noise correlations. Comptes Rendus Geosci 343:633–638CrossRefGoogle Scholar
  5. Campillo M, Paul A (2003) Long-range correlations in the diffuse seismic coda. Science 299:547–549. CrossRefGoogle Scholar
  6. Chávez-García FJ, Rodríguez M (2007) The correlation of microtremors: empirical limits and relations between results in frequency and time domains. Geophys J Int 171:657–664. CrossRefGoogle Scholar
  7. Davis P, Ishii M, Masters G (2005) An assessment of the accuracy of GSN sensor response information. Seismol Res Lett 76:678–683. CrossRefGoogle Scholar
  8. Denolle MA, Dunham EM, Prieto GA, Beroza GC (2013) Ground motion prediction of realistic earthquake sources using the ambient seismic field. J Geophys Res Solid Earth 118:2102–2118CrossRefGoogle Scholar
  9. Denolle MA, Dunham EM, Prieto GA, Beroza GC (2014) Strong ground motion prediction using virtual earthquakes. Science 343:399–403CrossRefGoogle Scholar
  10. Derode A, Larose E, Campillo M, Fink M (2003) How to estimate the Green’s function of a heterogeneous medium between two passive sensors? application to acoustic waves. Appl Phys Lett 83:3054–3056. CrossRefGoogle Scholar
  11. Durand S, Montagner JP, Roux P, Brenguier F, Nadeau RM, Ricard Y (2011) Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake. Geophys Res Lett 38:142–154Google Scholar
  12. Gouédard P, Seher T, McGuire JJ, Collins JA, van der Hilst RD (2014) Correction of ocean-bottom seismometer instrumental clock errors using ambient seismic noise. Bull Seismol Soc Am 104:1276–1288. CrossRefGoogle Scholar
  13. Haney MM, Power J, West M, Michaels P (2012) Causal instrument corrections for short-period and broadband seismometers. Seismol Res Lett 83:834–845. CrossRefGoogle Scholar
  14. Hannemann K, Krüger F, Dahm T (2014) Measuring of clock drift rates and static time offsets of ocean bottom stations by means of ambient noise. Geophys J Int 196:1034–1042. CrossRefGoogle Scholar
  15. Lin FC, Ritzwoller MH, Townend J, Bannister S, Savage MK (2007) Ambient noise Rayleigh wave tomography of New Zealand. Geophys J R Astron Soc 170:649–666CrossRefGoogle Scholar
  16. Meier U, Shapiro NM, Brenguier F (2010) Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise. Geophys J Int 181:985. CrossRefGoogle Scholar
  17. Moschetti MP, Ritzwoller MH, Shapiro NM (2007) Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochem Geophys Geosyst 8:Q08010. CrossRefGoogle Scholar
  18. Paul A, Campillo M, Margerin L, Larose E, Derode A (2005) Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves. J Geophys Res Solid Earth 110:B08302. CrossRefGoogle Scholar
  19. Prieto GA, Beroza GC (2008) Earthquake ground motion prediction using the ambient seismic field. Geophys Res Lett 35:137–149CrossRefGoogle Scholar
  20. Sabra KG, Gerstoft P, Roux P, Kuperman WA, Fehler MC (2005) Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys Res Lett 32:L03310. CrossRefGoogle Scholar
  21. Sato H (2013) Green's function retrieval from the CCF of random waves and energy conservation for an obstacle of arbitrary shape: noise source distribution on a large surrounding shell. Geophys J Int 193:997–1009. CrossRefGoogle Scholar
  22. Seats KJ, Lawrence JF, Prieto GA (2012) Improved ambient noise correlation functions using Welch’s method. Geophys J Int 188:513–523. CrossRefGoogle Scholar
  23. Sens-Schönfelder C (2008) Synchronizing seismic networks with ambient noise. Geophys J Int 174:966–970. CrossRefGoogle Scholar
  24. Sens-Schönfelder C, Wegler U (2006) Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys Res Lett 33:L21302. CrossRefGoogle Scholar
  25. Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31:07614. CrossRefGoogle Scholar
  26. Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–1618. CrossRefGoogle Scholar
  27. Snieder R (2004) Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase. Phys Rev E. CrossRefGoogle Scholar
  28. Stehly L, Campillo M, Shapiro NM (2006) A study of the seismic noise from its long-range correlation properties. J Geophys Res Solid Earth 111:B10306. CrossRefGoogle Scholar
  29. Stehly L, Campillo M, Shapiro NM (2007) Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts. Geophys J Int 171:223–230. CrossRefGoogle Scholar
  30. Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys Rev Lett 87:134301. CrossRefGoogle Scholar
  31. Wegler U, Sens-Schönfelder C (2007) Fault zone monitoring with passive image interferometry. Geophys J Int 168:1029–1033. CrossRefGoogle Scholar
  32. Xia Y, Ni S, Zeng X, Xie J, Wang B, Yuan S (2015) Synchronizing intercontinental seismic networks using the 26 s persistent localized microseismic source. Bull Seismol Soc Am 105:2101–2108. CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2018

Authors and Affiliations

  • Fang Ye
    • 1
    • 2
  • Jun Lin
    • 1
    • 2
    Email author
  • Xiaopu Zhang
    • 1
    • 2
  • Xiaoxue Jiang
    • 1
    • 2
  1. 1.College of Instrumentation & Electrical EngineeringJilin UniversityChangchunChina
  2. 2.National Geophysical Exploration Instrument Engineering Technology Research CenterChangchunChina

Personalised recommendations