Advertisement

Acta Geophysica

, Volume 66, Issue 6, pp 1273–1290 | Cite as

Stress studies in the Central Alborz by inversion of earthquake focal mechanism data

  • Shahrokh Pourbeyranvand
Research Article - Solid Earth Sciences
  • 58 Downloads

Abstract

The Alborz is one of the most important seismotectonic provinces in Iran. Furthermore, emplacement of Tehran as a mega city in southern part of the Alborz intensifies the seismic vulnerability in this area. In this study, the focal mechanism data from teleseismic and local seismic networks are used for stress tensor inversion. The earthquake focal mechanisms in the Central Alborz are divided into several groups with respect to their location. Two different stress tensor inversions, linear and nonlinear, are used for obtaining the principal stress orientations. The results show spatial variations in tectonic stress field, consistent with fault orientations and faulting mechanisms. The maximum compressional stress directions obtained in this study are confirmed by fast S-wave polarization axes reported by a previous shear wave splitting study. The maximum horizontal stress directions are also compared with GPS strain rates. The results indicate a partitioning of deformation in the area due to regional stresses along preexisting faults.

Keywords

Deformation partitioning Earthquake Focal mechanism Inversion Stress Shear wave splitting 

Notes

Acknowledgements

The author acknowledges International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran, for supporting this project (activity code: 9804) and deeply appreciate B. Lund from Uppsala University, M. Tatar from IIEES, H. Shomali from University of Tehran, and Th. Arnadotir from Iceland University for providing the necessary codes, helpful comments, and their kind collaborations. And last but not least, I thank the anonymous reviewers of the journal, who I owe the improvements in all aspects and every single word of this paper, to their many careful and precise corrections.

References

  1. Abbassi A, Nasrabadi A, Tatar M, Yaminifard F, Abbassi M, Hatzfeld D, Priestley K (2010) Crustal velocity structure in the southern edge of the Central Alborz (Iran). J Geodyn 49(2):68–78.  https://doi.org/10.1016/j.jog.2009.09.044 CrossRefGoogle Scholar
  2. Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. J Geodyn 21(1):1–33CrossRefGoogle Scholar
  3. Allen M, Ghassemi MR, Sharabi M, Qorashi M (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, Iran. J Struct Geol 25:659–672CrossRefGoogle Scholar
  4. Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge earth science series. Cambridge University Press, London, p 212Google Scholar
  5. Berberian M (1983) The southern Caspian: a compressional depression floored by a trapped, modified oceanic crust. Can J Earth Sci 20(2):163–183CrossRefGoogle Scholar
  6. Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265CrossRefGoogle Scholar
  7. Berberian M, Walker R (2010) The Rudbar Mw 7.3 earthquake of 1990 June 20; seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High-Alborz’, Iran. Geophys J Int 182:1577–1602.  https://doi.org/10.1111/j.1365-246X.2010.04705.x CrossRefGoogle Scholar
  8. Berberian M, Yeats RS (2001) Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. J Struct Geol 23:563–584CrossRefGoogle Scholar
  9. Djamour Y, Vernant P, Bayer R, Nankali HR, Ritz JF, Hinderer J, Hatam Y, Luck B, Moigne N, Sedighi M, Khorrami F (2010) GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophys J Int 183:1287–1301CrossRefGoogle Scholar
  10. Ekström G, Nettles M, Dziewonski AM (2012) The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200–201:1–9.  https://doi.org/10.1016/j.pepi.2012.04.002 CrossRefGoogle Scholar
  11. Engdahl ER, Van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722–743Google Scholar
  12. Gephart JW, Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J Geophys Res 89:9305–9320CrossRefGoogle Scholar
  13. Gillard D, Wyss M (1995) Comparison of strain and stress tensor orientation: application to Iran and Southern California. J Geophys Res Solid Earth 100(B11):22197–22213CrossRefGoogle Scholar
  14. Hardebeck J, Hauksson E (2001) Stress orientations obtained from earthquake focal mechanisms: what are appropriate uncertainty estimates? Bull Seismol Soc Am 91(2):250–262CrossRefGoogle Scholar
  15. Hollingsworth J, Nazari H, Ritz JF, Salamati R, Talebian M, Bahroudi A, Walker R, Rizza M, Jackson J (2010) Active tectonics of the east Alborz mountains, NE Iran: Rupture of the left-lateral Astaneh fault system during the great 856 A.D. Qumis earthquake. J Geophys Res.  https://doi.org/10.1029/2009jb007185 CrossRefGoogle Scholar
  16. Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the South Caspian Basin. Geophys J Int 148:214–245Google Scholar
  17. Javidfakhr B, Bellier O, Shabanian E, Siame L, Léanni L, D Bourlès, Ahmadian S (2011) Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): geodynamic implications for NNE Iran. J Geodyn 52:290–303CrossRefGoogle Scholar
  18. Kagan YY (1991) 3-D rotation of double-couple earthquake sources. Geophys J Int 106:709–716CrossRefGoogle Scholar
  19. Keiding M, Lund B, Arnadottir Th (2009) Earthquakes, stress, and strain along an obliquely divergent plate boundary: Reykjanes Peninsula, Southwest Iceland. J Geophys Res.  https://doi.org/10.1029/2008jb006253 CrossRefGoogle Scholar
  20. Khorrami F, Hesami Kh, Nankali HR, Tavakoli F (2012) Geosciences. Geol Surv Iran 82:223–230Google Scholar
  21. Lund B, Böđvarsson R (2002) Correlation of microearthquake body-wave spectral amplitudes. Bull Seismol Soc Am 92(6):2419–2433CrossRefGoogle Scholar
  22. Lund B, Slunga R (1999) Stress tensor inversion using detailed microearthquake information and stability constraints: application to Olfus in southwest Iceland. J Geophys Res 104(B7):14947–14964CrossRefGoogle Scholar
  23. Lund B, Townend J (2007) Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophys J Int 170:1328–1335.  https://doi.org/10.1111/j.1365-246X.2007.03468.x CrossRefGoogle Scholar
  24. Masson F, Djamour Y, Van Gorp S, Chéry J, Tatar M, Tavakoli F, Nankali H, Vernant P (2006) Extension in NW Iran driven by the motion of the South Caspian Basin. Earth Planet Sci Lett 252(1–2):180–188.  https://doi.org/10.1016/j.epsl.2006.09.038 CrossRefGoogle Scholar
  25. Michael AJ (1984) Determination of stress from slip data: faults and folds. J Geophys Res 89(B13):11517–11526CrossRefGoogle Scholar
  26. Mirzayi Suzani M, Shahidi A, Ramezani Omali R, Alizadeh Suri F (2016) Geosciences. Geol Surv Iran 95:39–48Google Scholar
  27. Motavalli-Anbaran S, Zeyen H, Brunet M, Ardestani VE (2011) Crustal and lithospheric structure of the Alborz Mountains, Iran and surrounding areas from integrated geophysical modeling. Tectonics.  https://doi.org/10.1029/2011tc002934 CrossRefGoogle Scholar
  28. Musumeci C, Patanè D, Scarfĭ L, Gresta S (2005) Stress directions and shear-wave anisotropy: observations from local earthquakes in Southeastern Sicily, Italy. Bull Seismol Soc Am 95(4):1359–1374.  https://doi.org/10.1785/0120040108 CrossRefGoogle Scholar
  29. Naimi-Ghassabian N, Khatib M, Nazari H, Heyhat M (2015) Present-day tectonic regime and stress patterns from the formal inversion of focal mechanism data, in the North of Central–East Iran Blocks. J Afr Earth Sci 111:113–126.  https://doi.org/10.1016/j.jafrearsci.2015.07.018 CrossRefGoogle Scholar
  30. Nemati M, Hatzfeld D, Gheitanchi MR, Sadidkhouy A, Mirzaei N (2011) Microseismicity and seismotectonics of the Firuzkuh and Astaneh faults (East Alborz, Iran). Tectonophysics 506(1–4):11–21.  https://doi.org/10.1016/j.tecto.2011.04.007 CrossRefGoogle Scholar
  31. Nemati M, Hollingsworth J, Zhan Z, Bolourchi MJ, Talebian M (2013) Microseismicity and seismotectonics of the South Caspian Lowlands, NE Iran. Geophys J Int 193(3):1053–1070.  https://doi.org/10.1093/gji/ggs114 CrossRefGoogle Scholar
  32. Radjaee A, Rham D, Mokhtari M, Tatar M, Priestley K, Hatzfeld D (2010) Variation of Moho depth in the central part of the Alborz. Geophys J Int 181:173–184.  https://doi.org/10.1111/j.1365-246X.2010.04518.x CrossRefGoogle Scholar
  33. Raeesi M, Zarifi Z, Nilfouroushan F, Boroujeni SA, Tiampo K (2016) Quantitative analysis of seismicity in Iran. Pure Appl Geophys 174(3):793–833.  https://doi.org/10.1007/s00024-016-1435-4 CrossRefGoogle Scholar
  34. Ritz J-F, Nazari H, Ghassemi A, Salamati R, Shafei A, Solaymani S, Vernant P (2006) Active transtension inside central Alborz: a new insight into northern Iran-southern Caspian geodynamics. Geology 34(6):477–480CrossRefGoogle Scholar
  35. Sadidkhouy A, Javan-Doloei G, Siahkoohi HR (2008) Seismic anisotropy in the crust and upper mantle of the Central Alborz Region, Iran. Tectonophysics 456(3–4):194–205CrossRefGoogle Scholar
  36. Shabanian E, Bellier O, Abbassi MR, Siame L, Farbod Y (2010) Plio-Quaternary stress states in NE Iran: Kopeh Dagh and Allah Dagh-Binalud mountain ranges. Tectonophysics 480(1–4):280–304CrossRefGoogle Scholar
  37. Snoke JA, Munsey JW, Teague AC, Bollinger GA (1984) A program for focal mechanism determination by combined use of polarity and SV -P amplitude ratio data, Earthquake Notes, 55, #3, 15Google Scholar
  38. Stocklin J (1974) Possible ancient continental margin in Iran. In: Burke C, Drake C (eds) Geology of continental margins. Springer, New York, pp 873–877CrossRefGoogle Scholar
  39. Tatar M, Jackson J, Hatzfeld D, Bergman E (2007) The 28 May 2004 Baladeh earthquake (Mw 6.2) in the Alborz, Iran: implications for Tehran and the geology of the South Caspian Basin margin. Geophys J Int 170:249–261CrossRefGoogle Scholar
  40. Tatar M, Hatzfeld D, Abbassi A, Yamini Fard F (2012) Microseismicity and seismotectonics around the Mosha fault (Central Alborz, Iran). Tectonophysics 544–545:50–59CrossRefGoogle Scholar
  41. Vavryčuk V (2014) Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys J Int 199(1):69–77.  https://doi.org/10.1093/gji/ggu224 CrossRefGoogle Scholar
  42. Vavrycuk V, Bouskova A (2008) S-wave splitting from records of local micro-earthquakes in West Bohemia/Vogtland: an indicator of complex crustal anisotropy. Stud Geophys Geod 52:631–650.  https://doi.org/10.1007/s11200-008-0041-z CrossRefGoogle Scholar
  43. Vernant Ph, Nilforoushan F, Che´ry J, Bayer Y, Djamour R, Massona F, Nankali H, Ritz JF, Sedighi M, Tavakoli F (2004) Deciphering oblique shortening of central Alborz in Iran using geodetic data, Earth planet. Sci Lett 223:177–185Google Scholar
  44. Zanchi A, Berra F, Mattei M, Ghassemi M, Sabouri J (2006) Inversion tectonics in central Alborz, Iran. J Struct Geol 28:2023–2037CrossRefGoogle Scholar
  45. Zarifi Z, Nilfouroushan F, Raeesi M (2014) Crustal stress map of Iran: insight from seismic and geodetic computations. Pure Appl Geophys 171(7):1219–1236CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2018

Authors and Affiliations

  1. 1.Seismology DepartmentInternational Institute of Earthquake Engineering and SeismologyTehranIran

Personalised recommendations