Advertisement

Forecasting daily flow rate-based intelligent hybrid models combining wavelet and Hilbert–Huang transforms in the mediterranean basin in northern Algeria

  • Zaki Abda
  • Mohamed Chettih
Research Article - Hydrology

Abstract

The modelling of the rainfall–runoff relationship plays an important role in risk reduction and prevention against water-related disasters and in water resources management. In this research, we have modelled the rainfall–runoff relationship using intelligent hybrid models for forecasting daily flow rates of the Sebaou basin located in northern Algeria. As such, two hybrid approaches of artificial intelligence have been used in this study. These approaches are based on the adaptive neuro-fuzzy inference system combined with hydrological signal decomposition techniques. The first is derived from the Hilbert–Huang transform called the empirical mode decomposition and the other is derived from the discrete wavelet transform called multiresolution analysis. The results obtained seem to be very encouraging and the techniques appear promising. The performances of the hybrid models are relatively much higher than the other models used for comparison in this study. Although the technique of parallel computing has been used and despite the power of the computing station, the relatively long computation time is the main disadvantage of these models.

Keywords

Forecasting Daily flow rates Intelligent hybrid models Hilbert–Huang transform Wavelet transform Northern Algeria 

Notes

Acknowledgements

We would like to thank the National Agency of Hydraulic Resources for providing the hydrological data and the Directorate General for Scientific Research and Technological Development for supporting this research project.

References

  1. Akrami SA, El-Shafie A, Jaafar O (2013) Improving rainfall forecasting efficiency using modified adaptive Neuro-Fuzzy Inference System (MANFIS). Water Resour Manag 27(9):3507–3523.  https://doi.org/10.1007/s11269-013-0361-9 CrossRefGoogle Scholar
  2. Awan JA, Bae DH (2014) Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts. Water Resour Manag 28(5):1185–1199.  https://doi.org/10.1007/s11269-014-0512-7 CrossRefGoogle Scholar
  3. Badrzadeh H, Sarukkalige R, Jayawardena AW (2015) Hourly runoff forecasting for flood risk management: application of various computational intelligence models. J Hydrol 529:1633–1643.  https://doi.org/10.1016/j.jhydrol.2015.07.057 CrossRefGoogle Scholar
  4. Beven KJ (2000) Uniqueness of place and process representations in hydrological modelling. Hydrol Earth Sys Sci Discuss 4(2):203–213CrossRefGoogle Scholar
  5. Brunet Y, Collineau S (1995) Wavelet Analysis of diurnal and nocturnal turbulence above a maize crop. Wavelets Geophys 10:129–150Google Scholar
  6. Chandwani V, Vyas SK, Agrawal V, Sharma G (2015) Soft computing approach for rainfall-runoff modelling: a review. Aqua Procedia 4:1054–1061.  https://doi.org/10.1016/j.aqpro.2015.02.133 CrossRefGoogle Scholar
  7. Crawford NH, Linsley RK (1966) Digital simulation in hydrology: Stanford watershed model IV. Technical Report No39, Stanford University, Department of Civil Engineering, Palo Alto, CA, USA 94305Google Scholar
  8. Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia, Pa, USA. https://doi.org/10.1137/1.9781611970104.fmGoogle Scholar
  9. Doroszkiewicz J, Romanowicz RJ (2017) Guidelines for the adaptation to floods in changing climate. Acta Geophys 65(4):849–861.  https://doi.org/10.1007/s11600-017-0050-9 CrossRefGoogle Scholar
  10. Flandrin P, Gonçalvès P (2004) Empirical mode decompositions as data-driven wavelet-like expansions. Int J Wavelets Multiresolut Info Process 2(4):477–496.  https://doi.org/10.1142/S0219691304000561 CrossRefGoogle Scholar
  11. Gautam D, Holz KP (2001) Rainfall-runoff modelling using adaptive neuro-fuzzy systems. J Hydroinf 3(1):3–10CrossRefGoogle Scholar
  12. Giarratano JC, Riley G (1994) Expert systems: principles and programming. PWS Publishing, BostonGoogle Scholar
  13. Hauduc H, Neumann MB, Muschalla D, Gamerith V, Gillot S, Vanrolleghem PA (2015) Efficiency criteria for environmental model quality assessment: a review and its application to wastewater treatment. Environ Modell Soft 68:196–204.  https://doi.org/10.1016/j.envsoft.2015.02.004 CrossRefGoogle Scholar
  14. Holschneider M (1995) Wavelets: an analysis tool. Clarendon Press, OxfordGoogle Scholar
  15. Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A Math Phys Eng Sci 454:903–955.  https://doi.org/10.1098/rspa.1998.0193 CrossRefGoogle Scholar
  16. Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech 31(1):417–457.  https://doi.org/10.1146/annurev.fluid.31.1.417 CrossRefGoogle Scholar
  17. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685.  https://doi.org/10.1109/21.256541 CrossRefGoogle Scholar
  18. Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83(3):378–406.  https://doi.org/10.1109/5.364486 CrossRefGoogle Scholar
  19. Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle SilverGoogle Scholar
  20. Jawerth B, Sweldens W (1994) An overview of the theory and applications of wavelets. In: Toet A, Foster D et al (eds) O YL, vol 126. Shape in picture, NATO ASI Series (Series F: Computer and Systems Sciences), Springer, Berlin pp, pp 249–274Google Scholar
  21. Jodouin JF (1994) Les Réseaux Neuromimétiques: Modèles et applications. Editions Hermès, ParisGoogle Scholar
  22. Kisi O, Shiri J (2011) Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resour Manag 25(13):3135–3152.  https://doi.org/10.1007/s11269-011-9849-3 CrossRefGoogle Scholar
  23. Kisi O, Latifoğlu L, Latifoğlu F (2014) Investigation of empirical mode decomposition in forecasting of hydrological time series. Water Resour Manag 28(12):4045–4057.  https://doi.org/10.1007/s11269-014-0726-8 CrossRefGoogle Scholar
  24. Komasi M, Sharghi S (2016) Hybrid wavelet-support vector machine approach for modelling rainfall–runoff process. Water Sci Technol 73(8):1937–1953.  https://doi.org/10.2166/wst.2016.048 CrossRefGoogle Scholar
  25. Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci Eur Geosci Union 5:89–97CrossRefGoogle Scholar
  26. Kumar P, Foufoula-Georgiou E (1993) A multicomponent decomposition of spatial rainfall fields: 1. Segregation of large-and small-scale features using wavelet transforms. Water Resour Res 29(8):2515–2532.  https://doi.org/10.1029/93WR00548 CrossRefGoogle Scholar
  27. Labat D (2010) Wavelet analyses in hydrology. In: Sivakumar B, Berndtsson R (eds) Advances in data-based approaches for hydrologic modeling and forecasting. World Scientific Publishing Co, Pte. Ltd, pp 371–410CrossRefGoogle Scholar
  28. Labat D, Ababou R, Mangin A (1999) Analyse en ondelettes en hydrologie karstique. 1re partie: analyse univariée de pluies et débits de sources karstiques. Comptes Rendus de l’Academie des Sciences Series de Paris (Series IIA). Earth Planet Sci 12(329):873–879Google Scholar
  29. Labat D, Ababou R, Mangin A (2000a) Rainfall–runoff relations for karstic springs. Part I: convolution and spectral analyses. J Hydrol 238(3–4):123–148.  https://doi.org/10.1016/S0022-1694(00)00321-8 CrossRefGoogle Scholar
  30. Labat D, Ababou R, Mangin A (2000b) Rainfall-runoff relation for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. J Hydrol 238:149–178.  https://doi.org/10.1016/S0022-1694(00)00322-X CrossRefGoogle Scholar
  31. Labat D, Ronchail J, Callede J et al (2004) Wavelet analysis of Amazon hydrological regime variability. Geophys Res Lett.  https://doi.org/10.1029/2003GL018741 Google Scholar
  32. Li C, Cheng KH (2007) Recurrent neuro-fuzzy hybrid-learning approach to accurate system modeling. Fuzzy Set Syst 158(2):194–212.  https://doi.org/10.1016/j.fss.2006.09.002 CrossRefGoogle Scholar
  33. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693.  https://doi.org/10.1109/34.192463 CrossRefGoogle Scholar
  34. Mandelbrot BB, Wallis JR (1968) Noah, Joseph, and operational hydrology. Water Resour Res 4(5):909–918.  https://doi.org/10.1029/WR004i005p00909 CrossRefGoogle Scholar
  35. Mehr AD, Kahya E, Olyaie E (2013) Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. J Hydrol 505:240–249.  https://doi.org/10.1016/j.jhydrol.2013.10.003 CrossRefGoogle Scholar
  36. Meyer Y (1992) Wavelets and operators. In: Cambridge studies in advanced mathematics, vol 37. Cambridge University Press, CambridgeGoogle Scholar
  37. Nayak PC, Sudheer KP, Jain SK (2007) Rainfall-runoff modeling through hybrid intelligent system. Water Resour Res.  https://doi.org/10.1029/2006WR004930 Google Scholar
  38. Nourani V, Mano A (2007) Semi-distributed flood runoff model at the subcontinental scale for southwestern Iran. Hydrol Process 21(23):3173–3180.  https://doi.org/10.1002/hyp.6549 CrossRefGoogle Scholar
  39. Nourani V, Kisi Ö, Komasi M (2011) Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. J Hydrol 402(1–2):41–59.  https://doi.org/10.1016/j.jhydrol.2011.03.002 CrossRefGoogle Scholar
  40. Nourani V, Baghanam AH, Rahimi AY, Nejad FH (2014a) Evaluation of wavelet-based de-noising approach in hydrological models linked to artificial neural networks. In: Islam T, Srivastava PK, Gupta M et al (eds) Computational intelligence techniques in earth and environmental sciences. Springer, Dordrecht, pp 209–241CrossRefGoogle Scholar
  41. Nourani V, Baghanam AH, Adamowski J, Kisi O (2014b) Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. J Hydrol 514:358–377.  https://doi.org/10.1016/j.jhydrol.2014.03.057 CrossRefGoogle Scholar
  42. Oberlin T, Meignen S, Perrier V (2012) An alternative formulation for the empirical mode decomposition. IEEE Trans Signal Process 60(5):2236–2246.  https://doi.org/10.1109/TSP.2012.2187202 CrossRefGoogle Scholar
  43. Rajurkar MP, Kothyari UC, Chaube UC (2002) Artificial neural networks for daily rainfall–runoff modelling. Hydrol Sci J 47(6):865–877.  https://doi.org/10.1080/02626660209492996 CrossRefGoogle Scholar
  44. Rezaeianzadeh M, Stein M, Tabari A et al (2013) Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting. Int J Environ Sci Technol 10(6):1181–1192.  https://doi.org/10.1007/s13762-013-0209-0 CrossRefGoogle Scholar
  45. Roche PA, Miquel J, Gaume E (2012) Hydrologie quantitative: processus, modèles et aide à la décision. Springer, BerlinCrossRefGoogle Scholar
  46. Šaletic DZ (2006) On further development of soft computing, some trends in computational intelligence. In: ISY 4th Serbian-Hungarian joint symposium on intelligentGoogle Scholar
  47. Sehgal V, Tiwari MK, Chatterjee C (2014) Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting. Water Resour Manag 28(10):2793–2811.  https://doi.org/10.1007/s11269-014-0638-7 CrossRefGoogle Scholar
  48. Sugeno M, Kang G (1986) Fuzzy modelling and control of multilayer incinerator. Fuzzy Set Syst 18(3):329–345.  https://doi.org/10.1016/0165-0114(86)90010-2 CrossRefGoogle Scholar
  49. Sun X, Qiao SF, Xie JR (2014) The study of precipitation forecast model on EMD-RBF neural network—a case study on northeast China. Appl Mech Math 641–642:119–122.  https://doi.org/10.4028/www.scientific.net/AMM.641-642.119 Google Scholar
  50. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC 15(1):116–132.  https://doi.org/10.1109/TSMC.1985.6313399 CrossRefGoogle Scholar
  51. Tarhule A (2005) Damaging rainfall and flooding the other Sahel hazards. Clim Change 72(3):355–377.  https://doi.org/10.1007/s10584-005-6792-4 CrossRefGoogle Scholar
  52. Tayfur G (2012) Soft computing in water resources engineering: artifical neural networks, fuzzy logic and genetic algorithms. WIT Press, SouthamptonGoogle Scholar
  53. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78.  https://doi.org/10.1175/1520-0477(1998) CrossRefGoogle Scholar
  54. Towell GG, Shavlik JW (1993) Extracting refined rules from knowledge-based neural networks. Mach Learn 13(1):71–101.  https://doi.org/10.1007/BF00993103 Google Scholar
  55. Turner B, Leclerc MY, Gauthier M, Moore KE, Fitzjarrald DR (1994) Identification of turbulence structures above a forest canopy using a wavelet transform. J Geophys Res: Atmos 99(D1):1919–1926.  https://doi.org/10.1029/93JD02260 CrossRefGoogle Scholar
  56. Wang WQ, Golnaraghi MF, Ismail F (2004) Prognosis of machine health condition using neuro-fuzzy systems. Mech Syst Signal Process 18(4):813–831.  https://doi.org/10.1016/S0888-3270(03)00079-7 CrossRefGoogle Scholar
  57. X-h Zhao, Chen X (2015) Auto regressive and ensemble empirical mode decomposition hybrid model for annual runoff forecasting. Water Resour Manag 29(8):2913–2926.  https://doi.org/10.1007/s11269-015-0977-z CrossRefGoogle Scholar
  58. Yam RCM, Tse PW, Li L, Tu P (2001) Intelligent predictive decision support system for condition-based maintenance. Int J Adv Manuf Technol 17(5):383–391.  https://doi.org/10.1007/s001700170173 CrossRefGoogle Scholar
  59. Yarar A (2014) A hybrid wavelet and neuro-fuzzy model for forecasting the monthly streamflow data. Water Resour Manag 28(2):553–565.  https://doi.org/10.1007/s11269-013-0502-1 CrossRefGoogle Scholar
  60. Zhu S, Zhou J, Ye L, Meng C (2016) Streamflow estimation by support vector machine coupled with different methods of time series decomposition in the upper reaches of Yangtze River, China. Environ Earth Sci 75:531.  https://doi.org/10.1007/s12665-016-5337-7 CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2018

Authors and Affiliations

  1. 1.Research Laboratory of Water Resources, Soil and Environment, Civil Engineering DepartmentAmar Telidji UniversityLaghouatAlgeria

Personalised recommendations