Advertisement

Acta Geophysica

, Volume 65, Issue 4, pp 701–712 | Cite as

Numerical sensitivity test of three-electrode laterolog borehole tool

  • Márk SzijártóEmail author
  • László Balázs
  • Dezső Drahos
  • Attila Galsa
Research Article - Applied Geophysics

Abstract

Finite element numerical simulation has been carried out to investigate quantitatively the response of the three-electrode laterolog borehole tool (LL3) on radial and vertical heterogeneity of the rock. In order to calculate the apparent resistivity from the electric potential and the current discharge of the measurement electrode the probe coefficient of the LL3 tool with finite electrode extent was determined. Two independent methods, a finite element modeling and a semi-analytical solution, resulted in the probe coefficient of approx. 0.15 m with a relative deviation of 2.4% due to the different geometry, resolution and electronics of the models. It was established that LL3 is only slightly sensitive to the presence of mud when the borehole diameter is d ≤ 30 cm and the ratio of the resistivity of rock and the borehole mud is 1 ≤ R t/R m ≤ 1000. Vertical heterogeneity test pointed out that the layer boundaries can be localized exactly even for thin bedded layer (with a thickness of 1 m) and the presence of low-resistive borehole mud. Correction factors were suggested to decrease the biasing effect of the low-resistive borehole mud and the shoulder beds on the apparent resistivity observed by LL3. Finally, it was verified that the probe has large penetration depth with excellent vertical resolution, what explains the enduring popularity of the LL3 tool in well logging.

Keywords

Well logging Three-electrode laterolog LL3 Finite element numerical modeling Borehole geophysics 

Notes

Acknowledgements

Authors are grateful to József Buránszki and Gábor Szongoth from Geo-Log Geophysical and Environmental Ltd. for their practical advices and useful suggestions. This research was supported by the State of Hungary in the framework of ÚNKP-17-3 New National Excellence Program.

References

  1. Bała M (2011) Evaluation of electric parameters of anisotropic sandy-shaly miocene formations on the basis of resistivity logs. Acta Geophys 59(5):654–966. doi: 10.2478/s11600-011-0033-1 Google Scholar
  2. Bała M, Cichy A (2015) Evaluating electrical anisotropy parameters in miocene formations in the cierpisz deposit. Acta Geophysica 63(5):1296–1315. doi: 10.2478/s11600-014-0252-3 Google Scholar
  3. Balázs L (2005) Modelling of cone penetration electric tool field. Geophys Trans ELGI 45(1):19–35Google Scholar
  4. Balázs L (2009) Modeling of electric DC measurements in inhomogeneous medium [Egyenáramú elektromos mérések elméleti modellezése inhomogén közegekben], PhD Thesis (in Hungarian), Eötvös Loránd University, Budapest, pp 102Google Scholar
  5. Cozzolino K, da Silva JD (2007) Synthetic focusing and simulation of dual laterolog tool in axisymmetric subsurface models. J Appl Geophys 61:102–110. doi: 10.1016/j.jappgeo.2006.05.001 CrossRefGoogle Scholar
  6. de Witte L, Gould RW (1959) Potential distribution due to a cylindrical electrode mounted on an insulating probe. Geophysics 24(3):566–579CrossRefGoogle Scholar
  7. Dobróka M, Szabó NP, Turai E (2012) Interval inversion of borehole data for petrophysical characterization of complex reservoirs. Acta Geod Geoph Hung 47(2):172–184. doi: 10.1556/AGeod.47.2012.2.6 CrossRefGoogle Scholar
  8. Dobróka M, Szabó NP, Tóth J, Vass P (2016) Interval inversion approach for an improved interpretation of well logs. Geophyics 81(2):D163–D175. doi: 10.1190/geo2015-0422.1 Google Scholar
  9. Drahos D, Galsa A (2007) Finite element modeling of penetration electric sonde [Penetrációs elektromos szonda modellezése véges elemes numerikus módszerrel]. Magy Geofiz 48(1):22–30 (in Hungarian with English abstract) Google Scholar
  10. Drahos D, Galsa A (2015) Modeling Groningen effect on deep laterolog. Geosciences and Engineering 4/6:9–21 (ISSN 2063-6997) Google Scholar
  11. Ellis DV, Singer JM (2008) Well logging for earth scientists. Springer, Dordrecht, p 692. ISBN 978-1-4020-3738-2Google Scholar
  12. Galsa A, Herein M, Drahos D, Herein A (2016) Effect of the eccentricity of normal resistivity borehole tools on the current field and resistivity measurement. J Appl Geophys 134:281–290. doi: 10.1016/j.jappgeo.2016.09.001 CrossRefGoogle Scholar
  13. Geo-Log Geophysical and Environmental Ltd. (2017) http://www.geo-log.hu. Accessed 25 June 2017
  14. Jarzyna J, Cichy A, Drahos D, Galsa A, Bała MJ, Ossowski A (2016) New methods for modeling laterolog resistivity corrections. Acta Geophys 64(2):417–442. doi: 10.1515/acgeo-2016-0012 CrossRefGoogle Scholar
  15. Kaźmierczuk M, Jarzyna J (2006) Improvement of lithology and saturation determined from well logging using statistical methods. Acta Geophys 54(4):378–398. doi: 10.2478/s11600-006-0030-y Google Scholar
  16. Keys WS (1990) Borehole geophysics applied to ground-water investigations, In: Techniques of water-resources investigations of the United States Geological Survey, chapter 2, United States Government Printing Office, pp 150Google Scholar
  17. Liu CR (2017) Theory of electromagnetic well logging. Elsevier, Netherlands, p 732 (9780128040089) Google Scholar
  18. Nimeck G, Koch R (2008) A progressive geophysical exploration strategy at the Shea Creek uranium deposit. Lead Edge 27(1):52–63. doi: 10.1190/1.2831680 CrossRefGoogle Scholar
  19. Owen JE, Greer WJ (1951) The guard electrode logging system. J Petrol Technol 3(12):347–356CrossRefGoogle Scholar
  20. Saboorian-Jooybari H, Dejamb M, Chen Z, Pourafshary P (2016) Comprehensive evaluation of fracture parameters by dual laterolog data. J Appl Geophys 131:214–221. doi: 10.1016/j.jappgeo.2016.06.005 CrossRefGoogle Scholar
  21. Serra O (2008) The well logging handbook. Éditions Technip, Paris, p 609. ISBN 978-2-7108-0912-8Google Scholar
  22. Tittman J (1986) Geophysical well logging. Academic Press Inc., London, p 175Google Scholar
  23. Wang H, Shao L, Large DJ, Wignall PB (2011) Constraints on carbon accumulation rate and net primary production in the Lopingian (Late Permian) tropical peatland in SW China. Palaeogeogr Palaeoclimatol Palaeoecol 300:152–157. doi: 10.1016/j.palaeo.2010.12.019 CrossRefGoogle Scholar
  24. Zimmerman WBJ (2006) Multiphysics modeling with finite element methods. World Scientific Publishing Company, Singapore, p 422 (981-256-843-3) CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2017

Authors and Affiliations

  1. 1.Department of Geophysics and Space SciencesEötvös Loránd UniversityBudapestHungary

Personalised recommendations