Acta Geophysica

, Volume 65, Issue 1, pp 1–12 | Cite as

Centimeter-level precise orbit determination for the HY-2A satellite using DORIS and SLR tracking data

  • Qiaoli KongEmail author
  • Jinyun GuoEmail author
  • Yu Sun
  • Chunmei Zhao
  • Chuanfa Chen
Research Article


The HY-2A satellite is the first ocean dynamic environment monitoring satellite of China. Centimeter-level radial accuracy is a fundamental requirement for its scientific research and applications. To achieve this goal, we designed the strategies of precise orbit determination (POD) in detail. To achieve the relative optimal orbit for HY-2A, we carried out POD using DORIS-only, SLR-only, and DORIS + SLR tracking data, respectively. POD tests demonstrated that the consistency level of DORIS-only and SLR-only orbits with respect to the CNES orbits were about 1.81 cm and 3.34 cm in radial direction in the dynamic sense, respectively. We designed 6 cases of different weight combinations for DORIS and SLR data, and found that the optimal relative weight group was 0.2 mm/s for DORIS and 15.0 cm for SLR, and RMS of orbit differences with respect to the CNES orbits in radial direction and three-dimensional (3D) were 1.37 cm and 5.87 cm, respectively. These tests indicated that the relative radial and 3D accuracies computed using DORIS + SLR data with the optimal relative weight set were obviously higher than those computed using DORIS-only and SLR-only data, and satisfied the requirement of designed precision. The POD for HY-2A will provide the invaluable experience for the following HY-2B, HY-2C, and HY-2D satellites.


HY-2A satellite Precise orbit determination DORIS SLR Weight 



We thank anonymous reviewers for their helpful comments. We express our gratitude to CNES for providing HY-2A precise orbit and CDDIS for providing DORIS and SLR data. This work was supported by the National Natural Science Foundation of China (Nos. 41374009 & 41201381), the Public Benefit Scientific Research Project of China (No. 201412001), International Science and Technology Cooperation Program of China (No. 2009DFB00130), the Shandong Natural Science Foundation of China (No. ZR2013DM009), the Basic Science and Technology Research Project of China (Grant No. 2015FY310200), and Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province (Changsha University of Science and Technology) (No. kfj150605).


  1. Auriol A, Tourain C (2010) DORIS system: the new age. Adv Space Res 46(12):1484–1496. doi: 10.1016/j.asr.2010.05.015 CrossRefGoogle Scholar
  2. Cerri L, Berthias JP, Bertiger WI, Haines BJ, Lemoine FG, Mercier F, Ries JC, Willis P, Zelensky NP, Ziebart M (2010) Precision orbit determination standards for the Jason series of altimeter missions. Mar. Geod. 33(S1):379–418. doi: 10.1080/01490419.2010.488966 CrossRefGoogle Scholar
  3. Cerri L, Lemoine JM, Mercier F (2013) DORIS-based point mascons for the long term stability of precise orbit solutions. Adv Space Res 52(3):466–476. doi: 10.1016/j.asr.2013.03.023 CrossRefGoogle Scholar
  4. Choi KR (2003) Jason-1 precision orbit determination using GPS combined with SLR and DORIS tracking data. Ph.D. Thesis. The University of Texas at Austin, Austin, USAGoogle Scholar
  5. Colombo OL (1989) The dynamics of global positioning system orbits and the determination of precise ephemerides. J Geophys Res 94:9167–9182CrossRefGoogle Scholar
  6. Couhert A, Cerri L, Legeais JF, Ablain M, Zelensky NP, Haines BJ, Lemoine FG, Bertiger WI, Desai SD, Otten M (2015) Towards the 1 mm/y stability of the radial orbit error at regional scales. Adv Space Res 55(1):2–3. doi: 10.1016/j.asr.2014.06.041 CrossRefGoogle Scholar
  7. Doornbos E, Scharroo R, Klinkrad H, Zandbergen R, Fritsche B (2002) Improved modelling of surface forces in the orbit determination of ERS and Envisat. Can. J. Remote Sens. 28(4):535–543CrossRefGoogle Scholar
  8. Gao F, Peng B, Zhang Y, Evariste NH, Liu J, Wang X, Zhong M, Lin M, Wang N, Chen R, Xu H (2015) Analysis of HY2A precise orbit determination using DORIS. Adv Space Res 55(5):1394–1404. doi: 10.1016/j.asr.2014.11.032 CrossRefGoogle Scholar
  9. Goad CC, Goodman L (1974) A modified Hopfield tropospheric refraction correction model. In: American Geophysical Union Annual Fall Meeting. San Francisco, USAGoogle Scholar
  10. Guo JY, Qin J, Kong QL, Li GW (2012) On simulation of precise orbit determination of HY-2 with centimeter precision based on satellite-borne GPS technique. Appl Geophys 9(1):95–107. doi: 10.1007/s11770-012-0319-3 CrossRefGoogle Scholar
  11. Guo J, Kong Q, Qin J, Sun Y (2013a) On precise orbit determination of HY-2 with space geodetic techniques. Acta Geophys 61(3):752–772. doi: 10.2478/s11600-012-0095-8 CrossRefGoogle Scholar
  12. Guo J, Zhao QL, Li M, Hu ZG (2013b) Centimeter level orbit determination for HY2A using GPS data (in Chinese). Geomatics and Information Science of Wuhan University 38(1):52–55Google Scholar
  13. Gurtner W, Noomen R, Pearlman MR (2005) The international laser ranging service: current status and future developments. Adv Space Res 36(3):327–332. doi: 10.1016/j.asr.2004.12.012 CrossRefGoogle Scholar
  14. Hackel S, Steigenberger P, Hugentobler U, Uhlemann M, Montenbruck O (2015) Galileo orbit determination using combined GNSS and SLR observations. GPS Solutions 19(1):15–25. doi: 10.1007/s10291-013-0361-5 CrossRefGoogle Scholar
  15. Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92(A5):4649–4662CrossRefGoogle Scholar
  16. Hopfield H (1971) Tropospheric effect on electromagnetically measured range: prediction from surface weather data. Radio Sci 6(3):357–367. doi: 10.1029/RS006i003p00357 CrossRefGoogle Scholar
  17. Jiang XW, Wang XH, Peng HL, Zhong M, Zhong SM (2014) Precise orbit determination technology based on DORIS solution for HY-2satellite (in Chinese). Eng Sci 16(6):83–89Google Scholar
  18. Kang Z, Tapley B, Bettadpur S, Ries J, Nagel P, Pastor R (2006) Precise orbit determination for the GRACE mission using only GPS data. J. Geod. 80:322–331. doi: 10.1007/s00190-006-0073-5 CrossRefGoogle Scholar
  19. Knocke PC, Ries JC, Tapley BD (1988) Earth radiation pressure effects on satellites. Proceedings of the AIAA/AAS Astrodynamics Conference, August 15–17. Minneapolis, Minnesota, pp 577–586Google Scholar
  20. Kong QL, Guo JY, Qin J, Sun Y (2013) Simulation of centimeter-level precise orbit determination for the HY-2 satellite using DORIS and SLR (in Chinese). Geomatics and Information Science of Wuhan University 38(6):694–699Google Scholar
  21. Kong Q, Guo J, Hwang C, Gao F, Lin SF, Zhao C (2014) Precise orbit determination and accuracy analysis of HY-2A satellite using DORIS Doppler data. Acta Geod. Geophys. 49:455–470. doi: 10.1007/s40328-014-0066-4 CrossRefGoogle Scholar
  22. Lemoine FG, Zelensky NP, Chin DS, Pavlis DE, Rowlands DD, Beckley BD, Luthcke SB, Willis P, Ziebart M, Sibthorpe A, Boy JP, Luceri V (2010) Towards development of a consistent orbit series for TOPEX Jason-1, and Jason-2. Adv Space Res 46(12):1513–1540. doi: 10.1016/j.asr.2010.05.007 CrossRefGoogle Scholar
  23. Li S, Galas R, Ewert D, Peng J (2016) An empirical model for the ionospheric global electron content storm-time response. Acta Geophys 64(1):253–269. doi: 10.1515/acgeo-2015-0067 CrossRefGoogle Scholar
  24. Lin MS, Wang XH, Peng HL, Zhao QL, Li M (2014) Precise orbit determination technology based on dual-frequency GPS solution for HY-2 satellite (in Chinese). Eng Sci 16(6):97–101Google Scholar
  25. Liu JH (2013) Satellite orbit determination method with DORIS system (in Chinese). Master Thesis. National University of Defense Technology, Changsha, ChinaGoogle Scholar
  26. Luthcke SB, Rowlands DD, Lemoine FG (2002) The SLR contribution to precise orbit determination in the GPS era. In: 13th International Workshop on Laser Ranging “Toward Millimeter Accuracy”. Washington D.C., USAGoogle Scholar
  27. Luthcke SB, Zelensky NP, Rowlands DD, Lemoine FG, Williams TA (2003) The 1-centimeter orbit: Jason-1 precision orbit determination using GPS, SLR, DORIS, and Altimeter Data. Mar Geod 26:399–421CrossRefGoogle Scholar
  28. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dynam. 56(5–6):394–415. doi: 10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  29. Mansoori AA, Khan PA, Atulkar R, Purohit PK, Gwal AK (2015) Ionospheric influences on GPS signals in terms of range delay. Russian J Earth Sci 15(3):1–9. doi: 10.2205/2015ES000555 CrossRefGoogle Scholar
  30. Marini JW, Murray CW (1973), Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees. GSFC Report X-591-73-351, Goddard Space Flight Center, Greenbelt, USAGoogle Scholar
  31. McCarthy DD, Petit G (2003) Equations of motion for an artificial earth satellite. In: IERS Conventions 2003. IERS Technical Note 32, 106–107, Paris, FranceGoogle Scholar
  32. Melachroinos SA, Lemoine FG, Zelensky NP, Rowlands DD, Deng C, Pavlis D (2011) Status of precise orbit determination for JASON-2 using GPS, SLR and DORIS data at NASA/GSFC. Geophys Res Abstract 13:EGU2011-10409Google Scholar
  33. Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31(L14):602. doi: 10.1029/2004GL020308 Google Scholar
  34. Mendes VB, Prates G, Pavlis EC, Pavlis DE, Langley RB (2002) Improved mapping functions for atmospheric refraction correction in SLR. Geophys Res Lett 29(10):53-1–53-4. doi: 10.1029/2001GL014394
  35. Mercier F, Cerri L, Berthias JP (2010) Jason-2 DORIS phase measurement processing. Adv Space Res 45:1441–1454. doi: 10.1016/j.asr.2009.12.002 CrossRefGoogle Scholar
  36. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. doi: 10.1029/2011JB008916 CrossRefGoogle Scholar
  37. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  38. Peng DJ, Wu B, Qu WJ (2012) Jason-2 precise orbit determination with DORIS/SLR tracking data (in Chinese). J Astronaut 33(10):1391–1400Google Scholar
  39. Petit G, Luzum B (2010) IERS conventions (2010). Bureau International des Poids et Mesures, Sevres (France)Google Scholar
  40. Rim HJ (1992) TOPEX orbit determination using GPS tracking system. Ph.D. Thesis, University of Texas at Austin, Austin, USAGoogle Scholar
  41. Rudenko S, Otten M, Visser P, Scharroo R, Schoene T, Esselborn S (2012) New improved orbit solutions for the ERS-1 and ERS-2 satellites. Adv Space Res 49:1229–1244. doi: 10.1016/j.asr.2012.01.021 CrossRefGoogle Scholar
  42. Seeber G (1993) Satellite Geodesy. Walter de Gruyter, BerlinGoogle Scholar
  43. Sheng CZ, Gan VJ, Zhao CM, Zhang XQ, Sun BQ, Chen WT (2014) Assessment of precise orbit determination of Jason-2 satellite using different observation technologies (in Chinese). Acta Geodaetica et Cartographica 43(8):796–802. doi: 10.13485/j.cnki.11-2089.2014.0133 Google Scholar
  44. Sośnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggiet A (2015) Satellite laser ranging to GPS and GLONASS. J. Geod. 89(7):725–743. doi: 10.1007/s00190-015-0810-8 CrossRefGoogle Scholar
  45. Standish EM (1998) JPL Planetary and Lunar ephemerides, DE405/LE405. Jet Propulsion Laboratory, Inter Office Memorandum, IOM, 312. F-98-048, 1-18Google Scholar
  46. Švehla D, Rothacher M (2003) Kinematic and reduced-dynamic precise orbit determination of low Earth orbiters. Adv. Geosci. 1:47–56CrossRefGoogle Scholar
  47. Tapley BD, Ries JC, Davis GW, Eanes RJ, Schutz BE, Shum CK, Watkins MM, Marshall JA, Nerem RS, Putney BH, Klosko SM, Luthcke SB, Pavlis D, Williamson RG, Zelensky NP (1994) Precision orbit determination for TOPEX/POSEIDON. J Geophys Res 99:24383–24404CrossRefGoogle Scholar
  48. Tavernier G, Fagard H, Feissel-Vernier M, Bail KL, Lemoine F, Noll C, Noomen R, Ries JC, Soudarin L, Valette JJ, Willis P (2006) The international DORIS service: genesis and early achievements. J. Geod. 80:403–417. doi: 10.1007/s00190-006-0082-4 CrossRefGoogle Scholar
  49. Thaller D, Sośnica K, Dach R, Jäggi A, Beutler G, Mareyen M, Richter B (2013), Geocenter coordinates from GNSS and combined GNSS-SLR solutions using satellite co-locations. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet 139:129–134. Springer, Berlin Heidelberg, doi: 10.1007/978-3-642-37222-3_16
  50. Tseng TP, Hwang CW, Yang SK (2012) Assessing attitude error of FORMOSAT-3/COSMIC satellites and its impact on orbit determination. Adv Space Res 49:1301–1312. doi: 10.1016/j.asr.2012.02.007 CrossRefGoogle Scholar
  51. Urschl C, Gurtner W, Hugentobler U, Schaer S, Beutle G (2005) Validation of GNSS orbits using SLR observations. Adv Space Res 36:412–417. doi: 10.1016/j.asr.2005.03.021 CrossRefGoogle Scholar
  52. Wang XH, Peng HL, Lin MS, Zhou XH (2014) Precise orbit determination technology based on SLR solution for HY-2 satellite (in Chinese). Eng Sci 16(6):90–96Google Scholar
  53. Willis P (1995) DORIS coordinating center report. In: IERS Annual Report 1995. IERS, Paris, FranceGoogle Scholar
  54. Willis P, Gobinddass ML, Garayt B, Fagard H (2012) Recent improvements in DORIS data processing at IGN in view of ITRF2008, the ignwd08 solution. Geodesy for Planet Earth International Association of Geodesy Symposia 136:43–49. doi: 10.1007/978-3-642-20338-1_6 CrossRefGoogle Scholar
  55. Willis P, Zelensky NP, Ries JC, Soudarin L, Cerri L, Moreaux G, Lemoine FG, Otten M, Argus DF, Heflin MB (2013), DPOD2008, A DORIS-oriented terrestrial reference frame for precise orbit determination. In: Rizos C, Willis P (eds) International Association of Geodesy Symposia, 143, Springer, SwitzerlandGoogle Scholar
  56. Wu B, Lin MS, Zhang ZP (2011) Global SLR tracking support for HY-2 satellite precise orbit determination. Proceedings of the 17th International Workshop on Laser Ranging, Bad Koetzting, Germany (online at
  57. Zelensky NP, Lemoine FG, Ziebart M, Sibthorped A, Willis P, Beckley BD, Klosko SM, Chinn DS, Rowlands DD, Luthcke SB, Pavlis DE, Luceri V (2010) DORIS/SLR POD modeling improvements for Jason-1 and Jason-2. Adv Space Res 46:1541–1558. doi: 10.1016/j.asr.2010.05.008 CrossRefGoogle Scholar
  58. Zhang Y, Vincent T (2011), HY2-ICD-0-00009-CNES technical. Document for HY2A Ground SegmentGoogle Scholar
  59. Zhang Q, Liao XH, Huang C (2000) An investigation of the precise orbit determination by combination of two kinds of measurements (in Chinese). Acta Astronomica Sinica 41(4):347–354Google Scholar
  60. Zhao G, Zhou XH, Wu B (2013) Precise orbit determination of Haiyang-2 using satellite laser ranging. Chinese Sci Bull 58(6):589–597. doi: 10.1007/s11434-021-5564-6 CrossRefGoogle Scholar
  61. Zhu J, Wang JS, Chen JR, He YF (2013) Centimeter precise orbit determination for HY-2 via DORIS (in Chinese). J Astronaut 34(2):163–169. doi: 10.3873/j.issn.1000-1328.2013.02.003 Google Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2017

Authors and Affiliations

  1. 1.College of GeomaticsShandong University of Science and TechnologyQingdaoChina
  2. 2.State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and TechnologyShandong University of Science and TechnologyQingdaoChina
  3. 3.Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan ProvinceChangsha University of Science & TechnologyChangshaChina
  4. 4.Department of Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands
  5. 5.Chinese Academy of Surveying and MappingBeijingChina

Personalised recommendations