Current Medical Science

, Volume 38, Issue 6, pp 949–961 | Cite as

Recent Advancements in Intestinal Microbiota Analyses: A Review for Non-Microbiologists

  • Xiao-wei Feng
  • Wen-ping Ding
  • Ling-yun Xiong
  • Liang Guo
  • Jia-ming Sun
  • Peng XiaoEmail author


Microbial constituents naturally inhabiting the gastrointestinal tract may influence the homeostasis of the gut environment. The presence or overabundance of some bacterial taxa has been reported to be associated with complex diseases, and the metabolites of certain bacteria may contribute to diverse disorders by influencing signaling pathways. Therefore, the study of gut microbial population has emerged as a crucial field and a new potential area of clinical significance. Advances in the methods of microbiota analysis have shed light upon the details including species diversity, microfloral activities as well as the entire gut microbiota. Nevertheless, comprehensive reviews on this subject are still limited. For elucidating the appropriate selection strategy of the methods to address a particular research question, we comprehensively reviewed the continuously improving technologies, classical to newly developed, and dissected their relative advantages and drawbacks. In addition, aiming at the rapidly advancing next-generation sequencing, we enumerated the improvements in mainstream platforms and made the horizontal and vertical comparison among them. Additionally, we demonstrated the four main -omics methods, which may provide further mechanistic insights into the role of microbiota, to propel phylotyping analysis to functional analysis.

Key words

gut microbiota methods analysis advantages drawbacks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steinhoff U. Who controls the crowd? New findings and old questions about the intestinal microflora. Immunol Lett, 2005,99(1):12–16CrossRefPubMedGoogle Scholar
  2. 2.
    Human Microbiome ProjectC. A framework for human microbiome research. Nature, 2012,486(7402):215–221CrossRefGoogle Scholar
  3. 3.
    Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature, 2012,486(7402):207–214CrossRefGoogle Scholar
  4. 4.
    Keates-Baleeiro J, Moore P, Koyama T, et al. Incidence and outcome of idiopathic pneumonia syndrome in pediatric stem cell transplant recipients. Bone Marrow Transplant, 2006,38(4):285–289CrossRefPubMedGoogle Scholar
  5. 5.
    Sommer F, Backhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol, 2013,11(4):227–238CrossRefPubMedGoogle Scholar
  6. 6.
    Clemente JC, Ursell LK, Parfrey LW, et al. The impact of the gut microbiota on human health: an integrative view. Cell, 2012,148(6):1258–1270CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Khanna S, Tosh PK. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc, 2014,89(1):107–114CrossRefPubMedGoogle Scholar
  8. 8.
    Guarner F, Malagelada JR. Gut flora in health and disease. Lancet, 2003,361(9356):512–519CrossRefPubMedGoogle Scholar
  9. 9.
    Dinan TG, Cryan JF. The impact of gut microbiota on brain and behaviour: implications for psychiatry. Curr Opin Clin Nutr Metab Care, 2015,18(6):552–558CrossRefPubMedGoogle Scholar
  10. 10.
    Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012,490(7418):55–60CrossRefPubMedGoogle Scholar
  11. 11.
    Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature, 2016,534(7606):213–217CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Boulange CL, Neves AL, Chilloux J, et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med, 2016,8(1):42CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gerritsen J, Smidt H, Rijkers GT, et al. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr, 2011,6(3):209–240CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 2013,155(7):1451–1463CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hill JM, Bhattacharjee S, Pogue AI, et al. The gastrointestinal tract microbiome and potential link to Alzheimer’s disease. Front Neurol, 2014,5:43CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fraher MH, O’Toole PW and Quigley EM. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol, 2012,9(6):312–322CrossRefPubMedGoogle Scholar
  17. 17.
    Kuczynski J, Lauber CL, Walters WA, et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet, 2012,13(1):47–58CrossRefGoogle Scholar
  18. 18.
    Maron PA, Ranjard L, Mougel C, et al. Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol, 2007,53(3):486–493CrossRefPubMedGoogle Scholar
  19. 19.
    Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature, 2009,457(7228):480–484CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Finegold SM, Attebery HR, Sutter VL. Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr, 1974,27(12):1456–1469CrossRefPubMedGoogle Scholar
  21. 21.
    Gossling J, Slack JM. Predominant gram-positive bacteria in human feces: numbers, variety, and persistence. Infect Immun, 1974,9(4):719–729PubMedPubMedCentralGoogle Scholar
  22. 22.
    Moore WE, Holdeman LV. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol, 1974,27(5):961–979PubMedPubMedCentralGoogle Scholar
  23. 23.
    Zengler K, Toledo G, Rappe M, et al. Cultivating the uncultured. Proc Natl Acad Sci USA, 2002,99(24): 15681–15686CrossRefPubMedGoogle Scholar
  24. 24.
    Zengler K, Walcher M, Clark G, et al. High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol, 2005,397:124–130CrossRefPubMedGoogle Scholar
  25. 25.
    Bollmann A, Lewis K, Epstein SS. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol, 2007,73(20):6386–6390CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kaeberlein T, Lewis K, Epstein SS. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science, 2002,296(5570):1127–1129CrossRefPubMedGoogle Scholar
  27. 27.
    Ingham CJ, Sprenkels A, Bomer J, et al. The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci USA, 2007,104(46):18217–18222CrossRefPubMedGoogle Scholar
  28. 28.
    McDonald JA, Schroeter K, Fuentes S, et al. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J Microbiol Methods, 2013,95(2):167–174CrossRefPubMedGoogle Scholar
  29. 29.
    Ma L, Kim J, Hatzenpichler R, et al. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa. Proc Natl Acad Sci USA, 2014,111(27):9768–9773CrossRefPubMedGoogle Scholar
  30. 30.
    Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science, 2005,308(5728):1635–1638CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lagier JC, Armougom F, Million M, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect, 2012,18(12):1185–1193CrossRefPubMedGoogle Scholar
  32. 32.
    Lau JT, Whelan FJ, Herath I, et al. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med, 2016,8(1):72CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lagier JC, Million M, Hugon P, et al. Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol, 2012,2:136CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Clarridge JE, 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev, 2004,17(4):840–862, table of contentsCrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol, 1999,2(3):299–305CrossRefPubMedGoogle Scholar
  36. 36.
    Lu T, Stroot PG, Oerther DB. Reverse transcription of 16S rRNA to monitor ribosome-synthesizing bacterial populations in the environment. Appl Environ Microbiol, 2009,75(13):4589–4598CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Olsen GJ, Lane DJ, Giovannoni SJ, et al. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol, 1986,40:337–365CrossRefPubMedGoogle Scholar
  38. 38.
    von Wintzingerode F, Gobel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev, 1997,21(3):213–229CrossRefGoogle Scholar
  39. 39.
    Kieler IN, Molbak L, Hansen LL, et al. Overweight and the feline gut microbiome -a pilot study. J Anim Physiol Anim Nutr (Berl), 2016,100(3):478–484CrossRefGoogle Scholar
  40. 40.
    Radilla-Vazquez RB, Parra-Rojas I, Martinez-Hernandez NE, et al. Gut Microbiota and Metabolic Endotoxemia in Young Obese Mexican Subjects. Obes Facts, 2016,9(1):1–11CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut, 2013,62(4):531–539CrossRefPubMedGoogle Scholar
  42. 42.
    Ponnusamy K, Choi JN, Kim J, et al. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J Med Microbiol, 2011, 60(Pt 6):817–827CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Obermajer T, Lipoglavsek L, Tompa G, et al. Colostrum of healthy Slovenian mothers: microbiota composition and bacteriocin gene prevalence. PLoS One, 2014, 10(4): e0123324CrossRefPubMedGoogle Scholar
  44. 44.
    Riddle MS and Connor BA. The Traveling Microbiome. Curr Infect Dis Rep, 2016,18(9):29CrossRefPubMedGoogle Scholar
  45. 45.
    Fischer SG, Lerman LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA, 1983,80(6):1579–1583CrossRefPubMedGoogle Scholar
  46. 46.
    Ramnani P, Costabile A, Bustillo AG, et al. Arandomised, double-blind, cross-over study investigating the prebiotic effect of agave fructans in healthy human subjects. J Nutr Sci, 2015, 4:e10CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fischer SG, Lerman LS. Separation of random fragments of DNA according to properties of their sequences. Proc Natl Acad Sci USA, 1980,77(8):4420–4424CrossRefPubMedGoogle Scholar
  48. 48.
    Liu WT, Marsh TL, Cheng H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol, 1997,63(11):4516–4522PubMedPubMedCentralGoogle Scholar
  49. 49.
    Dave M, Johnson LA, Walk ST, et al. A randomised trial of sheathed versus standard forceps for obtaining uncontaminated biopsy specimens of microbiota from the terminal ileum. Gut, 2011,60(8):1043–1049CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Brooks JP, Edwards DJ, Harwich MD, Jr., et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol, 2015,15:66CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hayashi H, Sakamoto M, Kitahara M, et al. Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol, 2003,47(8):557–570CrossRefPubMedGoogle Scholar
  52. 52.
    Matsumoto M, Sakamoto M, Hayashi H, et al. Novel phylogenetic assignment database for terminalrestriction fragment length polymorphism analysis of human colonic microbiota. J Microbiol Methods, 2005,61(3):305–319CrossRefPubMedGoogle Scholar
  53. 53.
    Mark Welch JL, Rossetti BJ, Rieken CW, et al. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA, 2016, 113(6):E791–800CrossRefPubMedGoogle Scholar
  54. 54.
    Smith PA. The tantalizing links between gut microbes and the brain. Nature, 2015,526(7573):312–314CrossRefPubMedGoogle Scholar
  55. 55.
    Ingber DE. Reverse Engineering Human Pathophysiology with Organs-on-Chips. Cell, 2016,164(6):1105–1109CrossRefPubMedGoogle Scholar
  56. 56.
    Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013,62(8):1112–1121CrossRefPubMedGoogle Scholar
  57. 57.
    Michail S, Durbin M, Turner D, et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis, 2012,18(10):1799–1808CrossRefPubMedGoogle Scholar
  58. 58.
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 1977,74(12):5463–5467CrossRefPubMedGoogle Scholar
  59. 59.
    Collins FS, Morgan M and Patrinos A. The Human Genome Project: lessons from large-scale biology. Science, 2003,300(5617):286–290CrossRefPubMedGoogle Scholar
  60. 60.
    Hall N. Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol, 2007, 210(Pt 9):1518–1525CrossRefPubMedGoogle Scholar
  61. 61.
    de Magalhaes JP, Finch CE, Janssens G. Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev, 2010,9(3):315–323CrossRefPubMedGoogle Scholar
  62. 62.
    Jeffery IB, O’Toole PW, Ohman L, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut, 2012,61(7):997–1006CrossRefPubMedGoogle Scholar
  63. 63.
    Tang J, Iliev ID, Brown J, et al. Mycobiome: Approaches to analysis of intestinal fungi. J Immunol Methods, 2015,421:112–121CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet, 2016,17(6):333–351CrossRefPubMedGoogle Scholar
  65. 65.
    Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature, 2012,486(7402):222–227CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Jaeggi T, Kortman GA, Moretti D, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut, 2015,64(5):731–742CrossRefPubMedGoogle Scholar
  67. 67.
    Olivares M, Neef A, Castillejo G, et al. The HLADQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut, 2015,64(3):406–417CrossRefPubMedGoogle Scholar
  68. 68.
    Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 2010,5(2):e9085CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Andersson AF, Lindberg M, Jakobsson H, et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One, 2008,3(7):e2836CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Turnbaugh PJ, Quince C, Faith JJ, et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci USA, 2010,107(16):7503–7508CrossRefPubMedGoogle Scholar
  71. 71.
    P OC, Aguirre de Carcer D, Jones M, et al. The effects from DNA extraction methods on the evaluation of microbial diversity associated with human colonic tissue. Microb Ecol, 2011,61(2):353–362CrossRefGoogle Scholar
  72. 72.
    Yuan S, Cohen DB, Ravel J, et al. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One, 2012,7(3):e33865CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Gilles A, Meglecz E, Pech N, et al. Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics, 2011,12:245CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Luo C, Tsementzi D, Kyrpides N, et al. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One, 2012,7(2):e30087PubMedGoogle Scholar
  75. 75.
    Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol, 2007,10(5):504–509CrossRefPubMedGoogle Scholar
  76. 76.
    Sanschagrin S, Yergeau E. Next-generation sequencing of 16S ribosomal RNA gene amplicons. J Vis Exp, 2014(90). doi:10.3791/51709Google Scholar
  77. 77.
    Lagier JC, Hugon P, Khelaifia S, et al. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev, 2015,28(1):237–264CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Xiong W, Abraham PE, Li Z, et al. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics, 2015,15(20):3424–3438CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Reigstad CS, Kashyap PC. Beyond phylotyping: understanding the impact of gut microbiota on host biology. Neurogastroenterol Motil, 2013,25(5):358–372CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wang WL, Xu SY, Ren ZG, et al. Application of metagenomics in the human gut microbiome. World J Gastroenterol, 2015,21(3):803–814CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Staden R. A strategy of DNA sequencing employing computer programs. Nucleic Acids Res, 1979,6(7):2601–2610CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Poinar HN, Schwarz C, Qi J, et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science, 2006,311(5759):392–394CrossRefPubMedGoogle Scholar
  83. 83.
    Metzker ML. Sequencing technologies -the next generation. Nat Rev Genet, 2010,11(1):31–46CrossRefPubMedGoogle Scholar
  84. 84.
    Sekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease. Physiol Rev, 2010,90(3):859–904CrossRefPubMedGoogle Scholar
  85. 85.
    Ranjan R, Rani A, Metwally A, et al. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun, 2016,469(4):967–977CrossRefPubMedGoogle Scholar
  86. 86.
    De Vos WM. Mining the microbes—the human microbiome as model. Microb Biotechnol, 2009,2(2): 153–154CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 2013,498(7452):99–103CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Karlsson FH, Fak F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun, 2012,3:1245CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med, 2015,21(8):895–905CrossRefPubMedGoogle Scholar
  90. 90.
    Ma J, Prince A, Aagaard KM. Use of whole genome shotgun metagenomics: a practical guide for the microbiome-minded physician scientist. Semin Reprod Med, 2014,32(1):5–13CrossRefPubMedGoogle Scholar
  91. 91.
    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009,10(1):57–63CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol, 2012,10(9):618–630CrossRefPubMedGoogle Scholar
  93. 93.
    Bashiardes S, Zilberman-Schapira G, Elinav E. Use of Metatranscriptomics in Microbiome Research. Bioinform Biol Insights, 2016,10:19–25CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Franzosa EA, Morgan XC, Segata N, et al. Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci USA, 2014, 111(22):E2329–2338CrossRefPubMedGoogle Scholar
  95. 95.
    Gosalbes MJ, Durban A, Pignatelli M, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One, 2011,6(3):e17447CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Peano C, Pietrelli A, Consolandi C, et al. An efficient rRNA removal method for RNA sequencing in GC-rich bacteria. Microb Inform Exp, 2013,3(1):1CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol, 2011,77(4):1153–1161CrossRefPubMedGoogle Scholar
  98. 98.
    Alves P, Arnold RJ, Novotny MV, et al. Advancement in protein inference from shotgun proteomics using peptide detectability. Pac Symp Biocomput, 2007:409–420Google Scholar
  99. 99.
    Hu L, Ye M, Jiang X, et al. Advances in hyphenated analytical techniques for shotgun proteome and peptidome analysis—a review. Anal Chim Acta, 2007,598(2):193–204CrossRefPubMedGoogle Scholar
  100. 100.
    Jordan KW, Nordenstam J, Lauwers GY, et al. Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum, 2009,52(3):520–525CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Aldridge BB, Rhee KY. Microbial metabolomics: innovation, application, insight. Curr Opin Microbiol, 2014,19:90–96CrossRefPubMedGoogle Scholar
  102. 102.
    Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol, 2016,7:1144CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Aguiar-Pulido V, Huang W, Suarez-Ulloa V, et al. Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis. Evol Bioinform Online, 2016, 12(Suppl 1):5–16PubMedPubMedCentralGoogle Scholar

Copyright information

© Huazhong University of Science and Technology 2018

Authors and Affiliations

  • Xiao-wei Feng
    • 1
  • Wen-ping Ding
    • 2
  • Ling-yun Xiong
    • 3
  • Liang Guo
    • 3
  • Jia-ming Sun
    • 3
  • Peng Xiao
    • 3
    Email author
  1. 1.Department of PsychiatryWuhan Youfu HospitalWuhanChina
  2. 2.Department of UltrasoundWuhan Women and Children’s Health Care CenterWuhanChina
  3. 3.Department of Plastic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations