Current Medical Science

, Volume 38, Issue 5, pp 818–826 | Cite as

A Single Bundle Anterior Cruciate Ligament Reconstruction (ACL-R) Using Hamstring Tendon Autograft and Tibialis Anterior Tendon Allograft: A Comparative Study

  • Saroj Rai
  • Sheng-yang Jin
  • Bimal Rai
  • Nira Tamang
  • Wei Huang
  • Xian-zhe Liu
  • Chun-qing Meng
  • Hong WangEmail author


The main purpose of this study was to compare the clinical outcomes of patients undergoing a single bundle anterior cruciate ligament reconstruction (ACL-R) of using quadrupled hamstring (4HT) autografts and two-strand tibialis anterior (2TA) allografts, and to find out the rate of graft failure and possible causes. We hypothesized that there would be no difference in the clinical outcome, and graft failure would be associated with the use of small sized allograft in young active males with high demand of sports activities. We retrospectively evaluated 222 patients (male, n=167, female, n=55) undergoing ACL-R between January 2010 and July 2014. Of 222 patients, 115 were included in the 4HT autograft group and 107 patients in the 2TA allograft group. Inclusion criteria were primary unilateral ACL-R with a minor MCL (<grade II) injury with or without meniscus tear and had at least 2.5 years of follow-up. Subjective evaluation was performed using Tegner-Lysholm score, modified Cincinnati knee score, and IKDC knee form. Anteroposterior laxity was assessed using ADT and Lachman test whereas rotational laxity was assessed using pivot shift test. Similarly, functional assessment was performed using range of motion (ROM), Daniel’s one-leg hop test, and overall IKDC score. Clinical outcomes were satisfactory and comparable in both groups with no statistically significant difference in all the respective parameters. No statistically significant difference was observed in graft re-rupture rate. However, most graft failures occurred in young active males with high demand of sports activities, graft size smaller than 8 mm, and use of allograft. An autograft with at least 8 mm diameter should be considered in a young active male with high demand of sports activities to avoid graft failure.

Key words

anterior cruciate ligament reconstruction autograft allograft hamstring tendon tibialis anterior tendon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sajovic M, Vengust V, Komadina R, et al. A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five-year follow-up. Am J Sports Med, 2006,34(12):1933–1940CrossRefGoogle Scholar
  2. 2.
    Borchers JR, Pedroza A, Kaeding C. Activity level and graft type as risk factors for anterior cruciate ligament graft failure: a case-control study. Am J Sports Med, 2009,37(12):2362–2367CrossRefGoogle Scholar
  3. 3.
    Mehran N, Moutzouros VB, Bedi A. A Review of Current Graft Options for Anterior Cruciate Ligament Reconstruction. JBJS Rev, 2015,3(11)Google Scholar
  4. 4.
    Engelman GH, Carry PM, Hitt KG, et al. Comparison of allograft versus autograft anterior cruciate ligament reconstruction graft survival in an active adolescent cohort. Am J Sports Med, 2014,42(10):2311–2318CrossRefGoogle Scholar
  5. 5.
    Kaeding CC, Pedroza AD, Reinke EK, et al. Risk Factors and Predictors of Subsequent ACL Injury in Either Knee After ACL Reconstruction: Prospective Analysis of 2488 Primary ACL Reconstructions From the MOON Cohort. Am J Sports Med, 2015,43(7):1583–1590CrossRefGoogle Scholar
  6. 6.
    Sun K, Zhang J, Wang Y, et al. Arthroscopic anterior cruciate ligament reconstruction with at least 2. 5 years' follow-up comparing hamstring tendon autograft and irradiated allograft. Arthroscopy, 2011,27(9):1195–1202CrossRefGoogle Scholar
  7. 7.
    Chang SK, Egami DK, Shaieb MD, et al. Anterior cruciate ligament reconstruction: allograft versus autograft. Arthroscopy, 2003,19(5):453–462CrossRefGoogle Scholar
  8. 8.
    Sun K, Zhang J, Wang Y, et al. A prospective randomized comparison of irradiated and nonirradiated hamstring tendon allograft for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2012,20(1):187–194CrossRefGoogle Scholar
  9. 9.
    Edgar CM, Zimmer S, Kakar S, et al. Prospective comparison of auto and allograft hamstring tendon constructs for ACL reconstruction. Clin Orthop Relat Res, 2008,466(9):2238–2246CrossRefGoogle Scholar
  10. 10.
    Landes S, Nyland J, Elmlinger B, et al. Knee flexor strength after ACL reconstruction: comparison between hamstring autograft, tibialis anterior allograft, and non-injured controls. Knee Surg Sports Traumatol Arthrosc, 2010,18(3):317–324CrossRefGoogle Scholar
  11. 11.
    Xie X, Liu X, Chen Z, et al. A meta-analysis of bonepatellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee, 2015,22(2):100–110CrossRefGoogle Scholar
  12. 12.
    Lawhorn KW, Howell SM, Traina SM, et al. The effect of graft tissue on anterior cruciate ligament outcomes: a multicenter, prospective, randomized controlled trial comparing autograft hamstrings with fresh-frozen anterior tibialis allograft. Arthroscopy, 2012,28(8):1079–1086CrossRefGoogle Scholar
  13. 13.
    Buck BE, Malinin TI, Brown MD. Bone transplantation and human immunodeficiency virus. An estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res, 1989,(240):129–136Google Scholar
  14. 14.
    Centers for Disease Control and Prevention. Septic arthritis following anterior cruciate ligament reconstruction using tendon allografts-Florida and Louisiana. MMWR Morb Mortal Wkly Rep, 2001,50(48):1081–1083Google Scholar
  15. 15.
    Centers for Disease Control and Prevention. Invasive Streptococcus pyogenes after allograft implantation-Colorado. MMWR Morb Mortal Wkly Rep, 2003,52(48):1174–1176Google Scholar
  16. 16.
    Harner CD, Honkamp NJ, Ranawat AS. Anteromedial portal technique for creating the anterior cruciate ligament femoral tunnel. Arthroscopy, 2008,24(1):113–115CrossRefGoogle Scholar
  17. 17.
    Luo H, Yu JK, Ao YF, et al. Relationship between different skin incisions and the injury of the infrapatellar branch of the saphenous nerve during anterior cruciate ligament reconstruction. Chin Med J (Engl), 2007,120(13):1127–1130Google Scholar
  18. 18.
    Bertram C, Porsch M, Hackenbroch MH, et al. Saphenous neuralgia after arthroscopically assisted anterior cruciate ligament reconstruction with a semitendinosus and gracilis tendon graft. Arthroscopy, 2000,16(7):763–766CrossRefGoogle Scholar
  19. 19.
    Sun K, Zhang J, Wang Y, et al. Arthroscopic reconstruction of the anterior cruciate ligament with hamstring tendon autograft and fresh-frozen allograft: a prospective, randomized controlled study. Am J Sports Med, 2011,39(7):1430–1438CrossRefGoogle Scholar
  20. 20.
    Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res, 1985(198):43–49Google Scholar
  21. 21.
    Noyes FR, Barber SD, Mooar LA. A rationale for assessing sports activity levels and limitations in knee disorders. Clin Orthop Relat Res, 1989(246):238–249Google Scholar
  22. 22.
    IKDC Committee, AOSSM (2000) IKDC knee forms. Edited, http://www. doc.Google Scholar
  23. 23.
    Leys T, Salmon L, Waller A, et al. Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med, 2012,40(3):595–605CrossRefGoogle Scholar
  24. 24.
    Wipfler B, Donner S, Zechmann CM, et al. Anterior cruciate ligament reconstruction using patellar tendon versus hamstring tendon: a prospective comparative study with 9-year follow-up. Arthroscopy, 2011,27(5):653–665CrossRefGoogle Scholar
  25. 25.
    Adachi N, Ochi M, Uchio Y, et al. Harvesting hamstring tendons for ACL reconstruction influences postoperative hamstring muscle performance. Arch Orthop Trauma Surg, 2003,123(9):460–465CrossRefGoogle Scholar
  26. 26.
    Lautamies R, Harilainen A, Kettunen J, et al. Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc, 2008,16(11):1009–1016CrossRefGoogle Scholar
  27. 27.
    Janssen RP, Scheffler SU. Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2014,22(9):2102–2108CrossRefGoogle Scholar
  28. 28.
    Jia YH, Sun PF. Comparison of Clinical Outcome of Autograft and Allograft Reconstruction for Anterior Cruciate Ligament Tears. Chin Med J (Engl), 2015,128(23):3163–3166CrossRefGoogle Scholar
  29. 29.
    Haut Donahue TL, Howell SM, Hull ML, et al. A biomechanical evaluation of anterior and posterior tibialis tendons as suitable single-loop anterior cruciate ligament grafts. Arthroscopy, 2002,18(6):589–597CrossRefGoogle Scholar
  30. 30.
    Shelton WR, Treacy SH, Dukes AD, et al. Use of allografts in knee reconstruction: II. Surgical considerations. J Am Acad Orthop Surg, 1998,6(3):169–175CrossRefGoogle Scholar
  31. 31.
    Rihn JA, Irrgang JJ, Chhabra A, et al. Does irradiation affect the clinical outcome of patellar tendon allograft ACL reconstruction? Knee Surg Sports Traumatol Arthrosc, 2006,14(9):885–896CrossRefGoogle Scholar
  32. 32.
    Fideler BM, Vangsness CT Jr, Lu B, et al. Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med, 1995,23(5):643–646CrossRefGoogle Scholar
  33. 33.
    Singhal MC, Gardiner JR, Johnson DL. Failure of primary anterior cruciate ligament surgery using anterior tibialis allograft. Arthroscopy, 2007,23(5):469–475CrossRefGoogle Scholar
  34. 34.
    Pearsall AW4th, Hollis JM, Russell GV Jr, et al. A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee. Arthroscopy, 2003,19(10):1091–1096CrossRefGoogle Scholar
  35. 35.
    Shino K, Inoue M, Horibe S, et al. Reconstruction of the anterior cruciate ligament using allogeneic tendon. Long-term followup. Am J Sports Med, 1990,18(5):457–465CrossRefGoogle Scholar
  36. 36.
    Tejwani SG, Chen J, Funahashi TT, et al. Revision Risk After Allograft Anterior Cruciate Ligament Reconstruction: Association With Graft Processing Techniques, Patient Characteristics, and Graft Type. Am J Sports Med, 2015,43(11):2696–2705CrossRefGoogle Scholar
  37. 37.
    Kraeutler MJ, Bravman JT, McCarty EC. Bonepatellar tendon-bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med, 2013,41(10):2439–2448CrossRefGoogle Scholar
  38. 38.
    Ellis HB, Matheny LM, Briggs KK, et al. Outcomes and revision rate after bone-patellar tendon-bone allograft versus autograft anterior cruciate ligament reconstruction in patients aged 18 years or younger with closed physes. Arthroscopy, 2012,28(12):1819–1825CrossRefGoogle Scholar
  39. 39.
    Park SY, Oh H, Park S, et al. Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2013,21(5):1111–1118CrossRefGoogle Scholar
  40. 40.
    Magnussen RA, Lawrence JT, West RL, et al. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy, 2012,28(4):526–531CrossRefGoogle Scholar

Copyright information

© Huazhong University of Science and Technology 2018

Authors and Affiliations

  • Saroj Rai
    • 1
    • 4
  • Sheng-yang Jin
    • 1
  • Bimal Rai
    • 2
  • Nira Tamang
    • 3
  • Wei Huang
    • 1
  • Xian-zhe Liu
    • 1
  • Chun-qing Meng
    • 1
  • Hong Wang
    • 1
  1. 1.Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  3. 3.School of Nursing, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  4. 4.National Trauma CenterNational Academy of Medical SciencesKathmanduNepal

Personalised recommendations