Current Medical Science

, Volume 38, Issue 1, pp 160–166 | Cite as

Effect of SrtA on Interspecies Adherence of Oral Bacteria

  • Ying Song (宋 颖)
  • Jin-zhi He (何金枝)
  • Ren-ke Wang (王人可)
  • Jing-zhi Ma (马净植)Email author
  • Ling Zou (邹 玲)Email author


This study aimed to study whether the Sortase A (srtA) gene helps mediate coaggregation and co-adherence between Streptococcus mutans (S. mutans) and other salivary bacteria. S. mutans UA159 and srtA-deficient mutant served as “bait” in classical co-aggregation assays and membrane-based co-adherence assays were used to examine interactions of S. mutans with Fusobacterium nucleatum (F. nucleatum), Streptococcus mitis (S. mitis), Streptococcus gordonii (S. gordonii), Streptococcus sanguis (S. sanguis), Actinomyces naeslundii (A. naeslundii) and Lactobacillus. Co-adherence assays were also performed using unfractionated saliva from healthy individuals. Co-adhering partners of S. mutans were sensitively detected using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Both UA159 and its srtA-deficient mutant bound to F. nucleatum but not to any of the other five salivary bacteria. The srtA-deficient mutant showed lower co-adherence with F.nucleatum. The two S. mutans strains also showed similar co-adherence profiles against unfractionated salivary bacteria, except that UA159 S. mutans but not the srtA-deficient bound to a Neisseria sp. under the same conditions. Deleting srtA reduces the ability of S. mutans to bind to F.nucleatum, but it does not appear to significantly affect the binding profile of S. mutans to bulk salivary bacteria.

Key words

co-aggregation co-adherence membrane-binding assay denaturing gradient gel electrophoresis Streptococcus mutans sortase A-deficient mutant strain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abranches J, Miller JH, Martinez AR, et al. The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun, 2011, 79(6): 2277–2284CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ahn SJ, Ahn SJ, Wen ZT, et al. Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect Immun, 2008, 76(9): 4259–4268CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nakano K, Nomura R, Matsumoto M, et al. Roles of oral bacteria in cardiovascular diseases-from molecular mechanisms to clinical cases: Cell-surface structures of novel serotype k Streptococcus mutans strains and their correlation to virulence. J Pharmacol Sci, 2010, 113(2): 120–125CrossRefPubMedGoogle Scholar
  4. 4.
    Kesavalu L, Lucas AR, Verma RK, et al. Increased atherogenesis during Streptococcus mutans infection in ApoE-null mice. J Dent Res, 2012, 91(3): 255–260CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Aviles-Reyes A, Miller JH, Simpson-Haidaris PJ, et al. Cnm is a major virulence factor of invasive Streptococcus mutans and part of a conserved threegene locus. Mol Oral Microbiol, 2014,29(1): 11–23CrossRefPubMedGoogle Scholar
  6. 6.
    Scott JR, Barnett TC. Surface proteins of gram-positive bacteria and how they get there. Annu Rev Microbiol, 2006, 60:397–423CrossRefPubMedGoogle Scholar
  7. 7.
    Scott JR, Zahner D. Pili with strong attachments: Gram-positive bacteria do it differently. Mol Microbiol, 2006, 62(2): 320–330CrossRefPubMedGoogle Scholar
  8. 8.
    Mandlik A, Swierczynski A, Das A, et al. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol, 2008,16(1): 33–40CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Proft T, Baker EN. Pili in Gram-negative and Gram-positive bacteria-structure, assembly and their role in disease. Cell Mol Life Sci, 2009, 66(4): 613–635CrossRefPubMedGoogle Scholar
  10. 10.
    Clancy KW, Melvin JA, McCafferty DG. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers, 2010, 94(4): 385–396CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kline KA, Dodson KW, Caparon MG, et al. A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol, 2010, 18(5): 224–232CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hendrickx AP, Budzik JM, Oh SY, et al. Architects at the bacterial surface-sortases and the assembly of pili with isopeptide bonds. Nat Rev Microbiol, 2011, 9(3): 166–176CrossRefPubMedGoogle Scholar
  13. 13.
    Igarashi T. Deletion in sortase gene of Streptococcus mutans Ingbritt. Oral Microbiol Immunol, 2004, 19(3): 210–213CrossRefPubMedGoogle Scholar
  14. 14.
    Lee SF, McGavin MK. Identification of a point mutation resulting in loss of cell wall anchoring activity of SrtA of Streptococcus mutans NG5. Infect Immun, 2004, 72(7): 4314–4317CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mazmanian SK, Liu G, Ton-That H, et al. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science, 1999, 285(5428): 760–763CrossRefPubMedGoogle Scholar
  16. 16.
    Luo H, Liang DF, Bao MY, et al. In silico identification of potential inhibitors targeting Streptococcus mutans sortase A. Int J Oral Sei, 2017,9(1): 53–62CrossRefGoogle Scholar
  17. 17.
    Yang WY, Kim CK, Ahn CH, et al. Flavonoid glycosides inhibit sortase A and sortase A-mediated aggregation of streptococcus mutans, an oral bacterium responsible for human dental caries. J Microbiol Biotechnol, 2016, 26(9): 1566–1569CrossRefPubMedGoogle Scholar
  18. 18.
    Davies JR, Svensater G, Herzberg MC. Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii. Microbiology, 2009,155(Pt6): 1977–1988CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang RK, He XS, Hu W, et al. Analysis of interspecies adherence of oral bacteria using a membrane binding assay coupled with polymerase chain reaction-denaturing gradient gel electrophoresis profiling. Int J Oral Sei, 2011, 3(2): 90–97CrossRefGoogle Scholar
  20. 20.
    Tao Y, Zhou Y, Ouyang Y, et al. Dynamics of oral microbial community profiling during severe early childhood caries development monitored by PCR-DGGE. Arch Oral Biol, 2013, 58(9): 1129–1138CrossRefPubMedGoogle Scholar
  21. 21.
    Antranikian G, Suleiman M, Schäfers C, et al. Diversity of bacteria and archaea from two shallow marine hydrothermal vents from Vulcano Island. Extremophiles, 2017, 21(4): 733–742CrossRefPubMedGoogle Scholar
  22. 22.
    Siqueira JF Jr, Rocas IN, Rosado AS. Investigation of bacterial communities associated with asymptomatic and symptomatic endodontic infections by denaturing gradient gel electrophoresis fingerprinting approach. Oral Microbiol Immunol, 2004, 19(6): 363–370CrossRefPubMedGoogle Scholar
  23. 23.
    Rickard AH, McBain AJ, Ledder RG, et al. Coaggregation between freshwater bacteria within biofilm and planktonic communities. FEMS Microbiol Lett, 2003, 220(1): 133–140CrossRefPubMedGoogle Scholar
  24. 24.
    Finn RD, Mistry J, Tate J, et al. The Pfam protein families database. Nucleic Acids Res, 2010,38 (Database issue): D211–222CrossRefPubMedGoogle Scholar
  25. 25.
    Suree N, Jung ME, Clubb RT. Recent advances towards new anti-infective agents that inhibit cell surface protein anchoring in Staphylococcus aureus and other gram-positive pathogens. Mini Rev Med Chem, 2007, 7(10): 991–1000CrossRefPubMedGoogle Scholar
  26. 26.
    Maresso AW, Schneewind O. Sortase as a target of anti-infective therapy. Pharmacol Rev, 2008, 60(1): 128–141CrossRefPubMedGoogle Scholar
  27. 27.
    Saxena D, Caufield PW, Li Y, et al. Genetic classification of severe early childhood caries by use of subtracted DNA fragments from Streptococcus mutans. J Clin Microbiol, 2008, 46(9): 2868–2873CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yang F, Zeng X, Ning K, et al. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J, 2012, 6(1): 1–10CrossRefPubMedGoogle Scholar
  29. 29.
    Hu P, Huang P, Chen MW. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch Oral Biol, 2013, 58(10): 1343–1348CrossRefPubMedGoogle Scholar
  30. 30.
    Huang P, Hu P, Zhou SY, et al. Morin inhibits sortase A and subsequent biofilm formation in Streptococcus mutans. Curr Microbiol, 2014,68(1): 47–52CrossRefPubMedGoogle Scholar
  31. 31.
    Kanasi E, Dewhirst FE, Chalmers N, et al. Clonal analysis of the microbiota of severe early childhood caries. Caries Res, 2010, 44(5): 485–497CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tanner AC, Kent RL Jr, Holgerson PL, et al. Microbiota of severe early childhood caries before and after therapy. J Dent Res, 2011, 90(11): 1298–1305CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Palmer RJ Jr, Kazmerzak K, Hansen MC, et al. Mutualism versus independence: strategies of mixed-species oral biofilm in vitro using saliva as the sole nutrient source. Infect Immun, 2001, 69(9): 5794–5804CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    JS Foster PEK. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol, 2004, 70(7): 4340–4348CrossRefGoogle Scholar
  35. 35.
    Li YH, Tang N, Aspiras MB, et al. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol, 2002, 184(10): 2699–2708CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    McNab R, Ford SK, El-Sabaeny A, et al. LuxS-based signaling in Streptococcus gordonii: autoinducer2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol, 2003,185(1): 274–284CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Blehert DS, Palmer RJ Jr, Xavier JB, et al. Autoinducer2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J Bacteriol, 2003,185(16): 4851 -4860CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Whittaker CJ, Klier CM, Kolenbrander PE. Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol, 1996, 50:513–552CrossRefPubMedGoogle Scholar
  39. 39.
    Malik A, Sakamoto M, Hanazaki S, et al. Coaggregation among nonflocculating bacteria isolated from activated sludge. Appl Environ Microbiol, 2003, 69(10): 6056–6063CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bradshaw DJ, Marsh PD, Watson GK, et al. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun, 1998, 66(10): 4729–4732PubMedPubMedCentralGoogle Scholar
  41. 41.
    Palmer RJ Jr, Gordon SM, Cisar JO, et al. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacterid, 2003, 185(11): 3400–3409CrossRefGoogle Scholar
  42. 42.
    Shen S, Samaranayake LP, Yip HK. Coaggregation profiles of the microflora from root surface caries lesions. Arch Oral Biol, 2005,50(1): 23–32CrossRefPubMedGoogle Scholar
  43. 43.
    Kuramitsu HK, He X, Lux R, et al. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev, 2007, 71(4): 653–670CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ruiz P, Sesena S, Izquierdo PM, et al. Bacterial biodiversity and dynamics during malolactic fermentation of Tempranillo wines as determined by a culture-independent method (PCR-DGGE). Appl Microbiol Biotechnol, 2010, 86(5): 1555–1562CrossRefPubMedGoogle Scholar
  45. 45.
    Ling Z, Kong J, Jia P, et al. Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb Ecol, 2010, 60(3): 677–690CrossRefPubMedGoogle Scholar
  46. 46.
    Jiang W, Jiang Y, Li C, et al. Investigation of supragingival plaque microbiota in different caries status of Chinese preschool children by denaturing gradient gel electrophoresis. Microb Ecol, 2011, 61(2): 342–352CrossRefPubMedGoogle Scholar
  47. 47.
    Wang R, Kaplan A, Guo L, et al. The influence of iron availability on human salivary microbial community composition. Microb Ecol, 2012, 64(1): 152–161CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kolenbrander PE. Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source. Int J Oral Sci, 2011, 3(2): 49–54CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Huazhong University of Science and Technology 2018

Authors and Affiliations

  • Ying Song (宋 颖)
    • 1
    • 2
  • Jin-zhi He (何金枝)
    • 1
    • 3
  • Ren-ke Wang (王人可)
    • 1
    • 3
  • Jing-zhi Ma (马净植)
    • 4
    Email author
  • Ling Zou (邹 玲)
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory of Oral DiseasesSichuan UniversityChengduChina
  2. 2.Department of Conservation Dentistry and EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
  3. 3.Department of Conservation Dentistry and Endodontics, West China Hospital of StomatologySichuan UniversityChengduChina
  4. 4.Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations