Current Medical Science

, Volume 37, Issue 5, pp 649–660 | Cite as

Comparison of diagnosing and staging accuracy of PET (CT) and MIBG on patients with neuroblastoma: Systemic review and meta-analysis

  • Jia Xia (夏 佳)
  • Hang Zhang (张 航)
  • Qun Hu (胡 群)
  • Shuang-you Liu (刘双又)
  • Liu-qing Zhang (张柳清)
  • Ai Zhang (张 艾)
  • Xiao-ling Zhang (张小玲)
  • Ya-qin Wang (王雅琴)
  • Ai-guo Liu (刘爱国)Email author


To perform a systemic review and meta-analysis of the diagnostic accuracy of PET (CT) and metaiodobenzylguanidine (MIBG) for diagnosing neuroblastoma (NB), electronic databases were searched as well as relevant references and conference proceedings. The diagnostic accuracy of MIBG and PET (CT) was calculated for NB, primary NB, and relapse/metastasis of NB based on their sensitivity, specificity, and area under the summary receiver operating characteristic curve (AUSROC) in terms of per-lesion and per-patient data. A total of 40 eligible studies comprising 1134 patients with 939 NB lesions were considered for the meta-analysis. For the staging of NB, the per-lesion AUSROC value of MIBG was lower than that of PET (CT) [0.8064±0.0414 vs. 0.9366±0.0166 (P<0.05)]. The per-patient AUSROC value of MIBG and PET (CT) for the diagnosis of NB was 0.8771±0.0230 and 0.6851±0.2111, respectively. The summary sensitivity for MIBG and PET (CT) was 0.79 and 0.89, respectively. The summary specificity for MIBG and PET (CT) was 0.84 and 0.71, respectively. PET (CT) showed higher per-lesion accuracy than MIBG and might be the preferred modality for the staging of NB. On the other hand, MIBG has a comparable diagnosing performance with PET (CT) in per-patient analysis but shows a better specificity.

Key words

positron emission tomography-computed tomography metaiodobenzylguanidine neuroblastoma diagnostic accuracy meta-analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pinto NR, Applebaum MA, Volchenboum SL, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol, 2015,33(27):3008–3017CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Matthay KK, Shulkin B, Ladenstein R, et al. Criteria for evaluation of disease extent by 123I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer, 2010,102(9):1319–1326CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cohn SL, Pearson AD, London WB, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol, 2009,27(2): 289–297CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Paltiel HJ, Gelfand MJ, Elgazzar AH, et al. Neural crest tumors: I-123 MIBG imaging in children. Radiology, 1994,190(1):117–121CrossRefPubMedGoogle Scholar
  5. 5.
    Olivier P, Colarinha P, Fettich J, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging, 2003,30(5):B45–B50CrossRefPubMedGoogle Scholar
  6. 6.
    Bonnin F, Lumbroso J, Tenenbaum F, et al. Refining interpretation of MIBG scans in children. J Nucl Med, 1994, May,35(5):803–810PubMedGoogle Scholar
  7. 7.
    Uslu L, Donig J, Link M, et al. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med, 2015,56(2):274–286CrossRefPubMedGoogle Scholar
  8. 8.
    Decarolis B, Schneider C, Hero B, et al. Iodine-123 metaiodobenzylguanidine scintigraphy scoring allows prediction of outcome in patients with stage 4 neuroblastoma: results of the Cologne interscore comparison study. J Clin Oncol, 2015,31(7):944–951CrossRefGoogle Scholar
  9. 9.
    Czapiewski P, Kunc M, Haybaeck J. Genetic and molecular alterations in olfactory neuroblastoma-implications for pathogenesis, prognosis and treatment. Oncotarget, 2016,7(32):52584–52596CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brisse HJ, Mc Carville MB, Granata C, et al. International Neuroblastoma Risk Group Project. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology, 2011,261(1):243–257PubMedGoogle Scholar
  11. 11.
    Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011,155(8):529–536CrossRefPubMedGoogle Scholar
  12. 12.
    Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. Ann Intern Med, 1997,127:820–826CrossRefPubMedGoogle Scholar
  13. 13.
    Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ, 2003,327(7414): 557–60CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Reitsma JB, Glas AS, Rutjes AW, et al. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol, 2005,58(10):982–990CrossRefPubMedGoogle Scholar
  15. 15.
    Zwinderman AH, Bossuyt PM. We should not pool diagnostic likelihood ratios in systematic reviews. Stat Med, 2008,27(5):687–697CrossRefPubMedGoogle Scholar
  16. 16.
    Dhull VS, Sharma P, Patel C, et al. Diagnostic value of 18F-FDG PET/CT in paediatric neuroblastoma: comparison with 131I-MIBG scintigraphy. Nucl Med Commun, 2015,36(10):1007–1013CrossRefPubMedGoogle Scholar
  17. 17.
    Gil TY, Lee do K, Lee JM, et al. Clinical experience with 18F-fluorodeoxyglucose positron emission tomography and 123I-metaiodobenzylguanine scintigraphy in pediatric neuroblastoma: complementary roles in follow-up of patients. Korean J Pediatr, 2014,57(6):278–286CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Piccardo A, Puntoni M, Lopci E, et al. Prognostic value of 18F-DOPA PET/CT at the time of recurrence in patients affected by neuroblastoma. Eur J Nucl Med Mol, 2014,41(6):1046–1056CrossRefGoogle Scholar
  19. 19.
    Lu MY, Liu YL, Chang HH, et al. Characterization of neuroblastic tumors using 18F-FDOPA PET. Soc Nucl Med, 2013,54(1):42–49CrossRefGoogle Scholar
  20. 20.
    Lopci E, Piccardo A, Nanni C, et al. 18F-DOPA PET/CT in neuroblastoma: comparison of conventional imaging with CT/MR. Clin Nucl Med, 2012,37(4):e73–e78CrossRefPubMedGoogle Scholar
  21. 21.
    Piccardo A, Lopci E, Conte M, et al. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol, 2012,39(1):57–71CrossRefGoogle Scholar
  22. 22.
    Melzer HI, Coppenrath E, Schmid I, et al. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol, 2011,38(9):1648–1658CrossRefGoogle Scholar
  23. 23.
    Papathanasiou ND, Gaze MN, Sullivan K, et al. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med, 2011,52(4):519–525CrossRefPubMedGoogle Scholar
  24. 24.
    Rozovsky K, Koplewitz BZ, Krausz Y, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AM J Roentgenol, 2008,190(4):1085–1090CrossRefGoogle Scholar
  25. 25.
    El-Maghraby T. 131I-MIBG in the diagnosis of primary and metastatic neuroblastoma. Gulf J Oncol, 2007,2:33–41Google Scholar
  26. 26.
    Hammami H, Hassine L, Mhiri A, et al. Metaiodobenzylguanidine scintigraphy in the diagnosis and followup of neuroblastoma. Apropos of 16 cases. Tunis Med, 2007,85(5):413–416PubMedGoogle Scholar
  27. 27.
    Franzius C, Hermann K, Weckesser M, et al. Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med, 2006,47(10): 1635–1642PubMedGoogle Scholar
  28. 28.
    Shah Syed GM, Naseer H, Usmani GN, et al. Role of iodine-131 MIBG scanning in the management of paediatric patients with neuroblastoma. Med Princ Pract, 2004,13(4): 196–200CrossRefPubMedGoogle Scholar
  29. 29.
    Hashimoto T, Koizumi K, Nishina T, et al. Clinical usefulness of iodine-123-MIBG scintigraphy for patients with neuroblastoma detected by a mass screening survey. Ann Nucl Med, 2003,17(8):633–640CrossRefPubMedGoogle Scholar
  30. 30.
    Pfluger T, Schmied C, Porn U, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. Am J Roentgenol, 2003,181(4): 1115–1124CrossRefGoogle Scholar
  31. 31.
    Hervas Benito I, Rivas Sanchez A, Bello Arques P. Value of 123I-MIBG scanning, neuron-specific enolase and serum ferritin in the diagnosis and follow-up of patients with neuroblastoma. Rev Esp Med Nucl, 2001,20(5):369–376CrossRefPubMedGoogle Scholar
  32. 32.
    Biasotti S, Garaventa A, Villavecchia GP, et al. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol 2000,35(2):153–155CrossRefPubMedGoogle Scholar
  33. 33.
    Schilling FH, Bihl H, Jacobsson H, et al. Combined 111In-pentetreotide scintigraphy and 123I-mIBG scintigraphy in neuroblastoma provides prognostic information. Med Pediatr Oncol, 2000,35(6):688–691CrossRefPubMedGoogle Scholar
  34. 34.
    Okuyama C, Ushijima Y, Sugihara H, et al. 123I-metaiodobenzylguanidine (MIBG) scintigraphy for the staging of neuroblastoma. Kaku Igaku JPN J Nucl Med, 1998,35(9):835–842Google Scholar
  35. 35.
    Kropp J, Hofmann M, Bihl H. Comparison of MIBG and pentetreotide scintigraphy in children with neuroblastoma. Is the expression of somatostatin receptors a prognostic factor? Anticancer Res, 1997,17(3B):1583-1538Google Scholar
  36. 36.
    Shalaby-Rana E, Majd M, Andrich MP, et al. In-111 pentetreotide scintigraphy in patients with neuroblastoma. Comparison with I-131 MIBG, N-Myc oncogene amplification, and patient outcome. Clin Nucl Med, 1997,22(5): 315–319PubMedGoogle Scholar
  37. 37.
    Hadj-Djilani NL, Lebtahi NE, Delaloye AB, et al. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nucl Med, 1995,22(4): 322–329CrossRefPubMedGoogle Scholar
  38. 38.
    Labreveux de Cervens C, Hartmann O, Bonnin F, et al. What is the prognostic value of osteomedullary uptake on MIBG scan in neuroblastoma patients under one year of age? Med Pediatr Oncol, 1994,22(2):107–114CrossRefPubMedGoogle Scholar
  39. 39.
    Gordon I, Peters AM, Gutman A, et al. Skeletal assessment in neuroblastoma—the pitfalls of iodine-123-MIBG scans. J Nucl Med, 1990,31(2):129–134PubMedGoogle Scholar
  40. 40.
    Heyman S, Evans AE, D'Angio GJ. I-131 metaiodobenzylguanidine: diagnostic use in neuroblastoma patients in relapse. Med Pediatr Oncol, 1988,16(5):337–340CrossRefPubMedGoogle Scholar
  41. 41.
    Edeling CJ, Frederiksen PB, Kamper J, et al. Diagnosis and treatment of neuroblastoma using metaiodobenzylguanidine. Clin Nucl Med, 1987,12(8):632–637CrossRefPubMedGoogle Scholar
  42. 42.
    Shapiro B. MIBG in the diagnosis and therapy of neuroblastoma and pheochromocytoma. Nucl Med, 1987,1:11–20Google Scholar
  43. 43.
    Hoefnagel CA, Voûte PA, de Kraker J, et al. Radionuclide diagnosis and therapy of neural crest tumors using iodine-131 metaiodobenzylguanidine. J Nucl Med, 1987,28(3):308–314PubMedGoogle Scholar
  44. 44.
    Caballero O, Ferris J, Verdeguer A, et al. Iodine-131 metaiodobenzylguanidine. Soc Nucl Med, 1986,27(6):868–869Google Scholar
  45. 45.
    Hadley GP, Rabe E. Scanning with iodine-131 MIBG in children with solid tumors: an initial appraisal. Soc Nucl Med, 1986,27(5):620–626Google Scholar
  46. 46.
    Heyman S, Evans AE. Iodine-131-metaiodobenzylguanidine (I-131-MIBG) in the diagnosis of neuroblastoma. J Nuc Med, 1986,27:931Google Scholar
  47. 47.
    Feine U, Muller-Schauenburg W, Treuner J, et al. Metaiodobenzylguanidine (MIBG) labeled with ml/nil in neuroblastoma diagnosis and follow-up treatment with a review of the diagnostic results of the International Workshop of Pediatric Oncology Held in Rome. Med Pediatr Oncol, 1987,15(4):181–187CrossRefPubMedGoogle Scholar
  48. 48.
    Kimming B, Brandeis WE, Eisenhut M, et al. Szintigraphische Diagnostik des Neuroblastoms mit meta-Jod-Benzylguanidin. Klin Padiat, 1986,198(3):224–229CrossRefGoogle Scholar
  49. 49.
    Munkner T. Scintigraphy of neuroblastoma. Nuklearmedizin, 1986 (suppl):436–438Google Scholar
  50. 50.
    Odano Masayuki T, Saka K. Significance of I-131 meta-iodobenzylguanidine scintigraphy in diagnosing neuroblastoma. Kakii Igakit, 1986,22(11):1685–1688Google Scholar
  51. 51.
    Fischer M, Galanski M, Winterberg B, et al. Localization procedures in pheochromocytoma and neuroblastoma. Cardiology, 1985,72(suppl 1):143–146CrossRefPubMedGoogle Scholar
  52. 52.
    Geatti O, Shapiro B, Sisson JC, et al. Iodine-131 metaiodobenzylguanidine scintigraphy for the location of neuroblastoma: preliminary experience in ten cases. Soc Nucl Med, 1985,26(7):736–742Google Scholar
  53. 53.
    Lumbroso J, Hartmann O, Leerle J, et al. Scintigraphic detection of neuroblastoma using 111I and 121I labelled metaiodobenzyl-guanidine. Eur J Nucl Med, 1985,11:A16Google Scholar
  54. 54.
    Muller-Gartner HW, Erttmann R, Helmke K. Die Szintigraphie mil Radiojod-[Meta-Jod-Benzylguanidin] in der Diagnostik des Neuroblastoms. Nuklearmedizin, 1985,24(5):222–226CrossRefPubMedGoogle Scholar
  55. 55.
    Feine U, Treuner J, Niethammer D, et al. Erste untenshungen zur scintigraphischen darstellung von neuroblastomen mit 131-J-meta-benzylguanidin. Nuc Compaci, 1984, 15:23–26Google Scholar
  56. 56.
    Bleeker G, Tytgat GA, Adam JA, et al. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev, 2015, 29(9):CD009263Google Scholar
  57. 57.
    Vik TA, Pfluger T, Kadota R, et al. 123I-mIBG scintigraphy in patients with known or suspected neuroblastoma: Results from a prospective multicenter trial. Pediatr Blood Cancer, 2009,52(7):784–790CrossRefPubMedGoogle Scholar
  58. 58.
    Boubaker A, Bischof Delaloye A. Nuclear medicine procedures and neuroblastoma in childhood. Their value in the diagnosis, staging and assessment of response to therapy. Q J Nucl Med, 2003,47(1):31–40PubMedGoogle Scholar
  59. 59.
    Piccardo A, Lopci E, Conte M, et al. PET/CT imaging in neuroblastoma. Q J Nucl Med Mol Imaging, 2013,57(1): 29–39PubMedGoogle Scholar
  60. 60.
    Naranjo A, Parisi MT, Shulkin BL, et al. Comparison of 123I-metaiodobenzylguanidine (MIBG) and 131I-MIBG semi-quantitative scores in predicting survival in patients with stage 4 neuroblastoma: a report from the Children's Oncology Group. Pediatr Blood Cancer, 2011,56(7): 1041–1045CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Pepe G, Bombardieri E, Lorenzoni A, et al. Single-photon emission computed tomography tracers in the diagnostics of neuroendocrine tumors. PET Clin, 2014,9(1):11–26CrossRefPubMedGoogle Scholar
  62. 62.
    Taggart DR, Han MM, Quach A, et al. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and 18F-fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol, 2009,27(32): 5343–5349CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kushner BH, Yeung HW, Larson SM, et al. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol, 2001,19(14):3397–3405CrossRefPubMedGoogle Scholar
  64. 64.
    Kroiss A, Shulkin BL, Uprimny C, et al. 68Ga-DOTATOC PET/CT provides accurate tumour extent in patients with extraadrenal paraganglioma compared to 123I-MIBG SPECT/CT. Eur J Nucl Med Mol Imaging, 2015,42(1):33–41CrossRefPubMedGoogle Scholar
  65. 65.
    Kroiss A, Putzer D, Uprimny C, et al. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr 3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging, 2011,38(5):865–873CrossRefPubMedGoogle Scholar
  66. 66.
    Cistaro A, Quartuccio N, Caobelli F, et al. 124I-MIBG: a new promising positron-emitting radiopharmaceutical for the evaluation of neuroblastoma. Nucl Med Rev Cent East Eur, 2015,18(2):102–106CrossRefPubMedGoogle Scholar

Copyright information

© Huazhong University of Science and Technology and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jia Xia (夏 佳)
    • 1
  • Hang Zhang (张 航)
    • 2
  • Qun Hu (胡 群)
    • 1
  • Shuang-you Liu (刘双又)
    • 1
  • Liu-qing Zhang (张柳清)
    • 1
  • Ai Zhang (张 艾)
    • 1
  • Xiao-ling Zhang (张小玲)
    • 3
  • Ya-qin Wang (王雅琴)
    • 1
  • Ai-guo Liu (刘爱国)
    • 1
    Email author
  1. 1.Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  3. 3.Department of HematologyShenzhen Children’s HospitalShenzhenChina

Personalised recommendations