Melanocortin-4 receptor expression in the rostral ventromedial medulla involved in modulation of nociception in transgenic mice

  • Xu-chu Pan (潘旭初)
  • Yong-tang Song (宋咏堂)
  • Cheng Liu (刘 成)
  • Hong-bing Xiang (项红兵)
  • Chuan-jian Lu (卢传坚)


The rostral ventromedial medulla (RVM) is a prominent component of the descending modulatory system involved in the control of spinal nociceptive transmission. In the current study, we investigated melanocortin-4 receptor (MC4R) expression in the RVM, where the neurons involved in modulation of nociception reside. Using a line of mice expressing green fluorescent protein (GFP) under the control of the MC4R promoter, we found a large number of GFP-positive neurons in the RVM [nucleus raphe magnus (NRM) and nucleus gigantocellularis pars α (NGCα)]. Fluorescence immunohistochemistry revealed that approximately 10% of MC4R-GFP-positive neurons coexpressed tyrosine hydroxylase, indicating that they were catecholaminergic, whereas 50%–75% of those coexpressed tryptophan hydroxylase, indicating that they were serotonergic. Our findings support the hypothesis that MC4R signaling in RVM may modulate the activity of serotonergic sympathetic outflow sensitive to nociceptive signals, and that MC4R signaling in RVM may contribute to the descending modulation of nociceptive transmission.

Key words

melanocortin-4 receptor nociception rostral ventromedial medulla 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leong ML, Gu M, Speltz-Paiz R, et al. Neuronal loss in the rostral ventromedial medulla in a rat model of neuropathic pain. J Neurosci, 2011,31(47):17 028–17 039CrossRefGoogle Scholar
  2. 2.
    Wei F, Dubner R, Zou S, et al. Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J Neurosci, 2010,30(25):8624–8636PubMedCrossRefGoogle Scholar
  3. 3.
    Tao YX. The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr Rev, 2010,31(4): 506–543PubMedCrossRefGoogle Scholar
  4. 4.
    Chu H, Sun J, Xu H, et al. Effect of periaqueductal gray melanocortin 4 receptor in pain facilitation and glial activation in rat model of chronic constriction injury. Neurol Res, 2012,34(9):871–888PubMedCrossRefGoogle Scholar
  5. 5.
    Liu H, Kishi T, Roseberry AG, et al. Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. J Neurosci, 2003,23(18):7143–7154PubMedGoogle Scholar
  6. 6.
    Sayk F, Heutling D, Dodt C, et al. Sympathetic function in human carriers of melanocortin-4 receptor gene mutations. J Clin Endocrinol Metab, 2010,95(4):1998–2002PubMedCrossRefGoogle Scholar
  7. 7.
    Greenfield JR, Miller JW, Keogh JM, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med, 2009,360(1):44–52PubMedCrossRefGoogle Scholar
  8. 8.
    Greenfield JR. Melanocortin signalling and the regulation of blood pressure in human obesity. J Neuroendocrinol, 2011,23(2):186–193PubMedCrossRefGoogle Scholar
  9. 9.
    Lee TK, Lois JH, Troupe JH, et al. Transneuronal tracing of neural pathways that regulate hindlimb muscle blood flow. Am J Physiol Regul Integr Comp Physiol, 2007,292(4):R1532–R1541PubMedCrossRefGoogle Scholar
  10. 10.
    Rossi J, Balthasar N, Olson D, et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab, 2011,13(2): 195–204PubMedCrossRefGoogle Scholar
  11. 11.
    Ye D, Guo Q, Feng J, et al. Laterodorsal tegmentum and pedunculopontine tegmental nucleus circuits regulate renal functions: Neuroanatomical evidence in mice models. J Huazhong Univ Sci Technol Med Sci, 2012,32(2): 216–220PubMedCrossRefGoogle Scholar
  12. 12.
    Ye DW, Li RC, Wu W, et al. Role of spinal cord in regulating mouse kidney: A virally mediated trans-synaptic tracing study. Urology, 2012,79(3):745.e1–745.e4.CrossRefGoogle Scholar
  13. 13.
    Barker JR, Thomas CF, Behan M. Serotonergic projections from the caudal raphe nuclei to the hypoglossal nucleus in male and female rats. Respir Physiol Neurobiol, 2009,165(2–3):175–184PubMedCrossRefGoogle Scholar
  14. 14.
    Voss-Andreae A, Murphy JG, Ellacott KL, et al. Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. Endocrinology, 2007,148(4):1550–1560PubMedCrossRefGoogle Scholar
  15. 15.
    Franklin KB, Paxinos G. The Mouse Brain in Stereotaxic Coordinates. Third Edition. San Diego, CA: Academic Press, 2007Google Scholar
  16. 16.
    Kerman IA, Enquist LW, Watson SJ, et al. Brainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants. J Neurosci, 2003,23(11):4657–4666PubMedGoogle Scholar
  17. 17.
    Braz JM, Enquist LW, Basbaum AI. Inputs to serotonergic neurons revealed by conditional viral transneuronal tracing. J Comp Neurol, 2009,514(2):145–160PubMedCrossRefGoogle Scholar
  18. 18.
    Xiang HB, Liu C, Guo QQ, et al. Deep brain stimulation of the pedunculopontine tegmental nucleus may influence renal function. Med Hypotheses, 2011,77(6):1135–1138PubMedCrossRefGoogle Scholar
  19. 19.
    Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Int J Obes Relat Metab Disord, 2001,25(Suppl 5):S78–S82PubMedCrossRefGoogle Scholar
  20. 20.
    Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav, 2001,74(4–5):703–708PubMedCrossRefGoogle Scholar
  21. 21.
    Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron, 2002,36(2):199–211PubMedCrossRefGoogle Scholar
  22. 22.
    Heisler LK, Cowley MA, Kishi T, et al. Central serotonin and melanocortin pathways regulating energy homeostasis. Ann N Y Acad Sci, 2003,994:169–174PubMedCrossRefGoogle Scholar
  23. 23.
    Lu N, Han M, Yang ZL, et al. Nociceptin/Orphanin FQ in PAG modulates the release of amino acids, serotonin and norepinephrine in the rostral ventromedial medulla and spinal cord in rats. Pain, 2010,148(3):414–425PubMedCrossRefGoogle Scholar
  24. 24.
    Hayashida K, Kimura M, Yoshizumi M, et al. Ondansetron reverses antihypersensitivity from clonidine in rats after peripheral nerve injury: role of gamma-amin-obu-tyric acid in alpha2-adrenoceptor and 5-HT3 serotonin receptor analgesia. Anesthesiology, 2012,117(2):389–398PubMedCrossRefGoogle Scholar

Copyright information

© Huazhong University of Science and Technology and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xu-chu Pan (潘旭初)
    • 1
  • Yong-tang Song (宋咏堂)
    • 1
  • Cheng Liu (刘 成)
    • 2
  • Hong-bing Xiang (项红兵)
    • 2
  • Chuan-jian Lu (卢传坚)
    • 3
  1. 1.Medical Association of Hubei ProvinceWuhanChina
  2. 2.Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  3. 3.Department of DermatologyGuangdong Provincial Hospital of Traditional Chinese MedicineGuangzhouChina

Personalised recommendations